Tuesday, 27 December 2016

Data Mining - Retrieving Information From Data

Data Mining - Retrieving Information From Data

Data mining definition is the process of retrieving information from data. It has become very important now days because data that is processed is usually kept for future reference and mainly for security purposes in a company. Data transforms is processed into information and it is mostly used in different ways depending on what information one is extracting and from where the person is extracting the information.

It is commonly used in marketing, scientific information and research work, fraud detection and surveillance and many more and most of this work is done using a computer. This definition can come in different terms data snooping, data fishing and data dredging all this refer to data mining but it depends in which department one is. One must know data mining definition so that he can be in a position to make data.

The method of data mining has been there for so many centuries and it is used up to date. There were early methods which were used to identify data mining there are mainly two: regression analysis and bayes theorem. These methods are never used now days because a lot of people have advanced and technology has really changed the entire system.

With the coming up or with the introduction of computers and technology, it becomes very fast and easy to save information. Computers have made work easier and one can be able to expand more knowledge about data crawling and learn on how data is stored and processed through computer science.

Computer science is a course that sharpens one skill and expands more about data crawling and the definition of what data mining means. By studying computer science one can be in a position to know: clustering, support vector machines and decision trees there are some of the units that are found on computer science.

It's all about all this and this knowledge must be applied here. Government institutions, small scale business and supermarkets use data.

The main reason most companies use data mining is because data assist in the collection of information and observations that a company goes through in their daily activity. Such information is very vital in any companies profile and needs to be checked and updated for future reference just in case something happens.

Businesses which use data crawling focus mainly on return of investments, and they are able to know whether they are making a profit or a loss within a very short period. If the company or the business is making a profit they can be in a position to give customers an offer on the product in which they are selling so that the business can be a position to make more profit in an organization, this is very vital in human resource departments it helps in identifying the character traits of a person in terms of job performance.

Most people who use this method believe that is ethically neutral. The way it is being used nowadays raises a lot of questions about security and privacy of its members. Data mining needs good data preparation which can be in a position to uncover different types of information especially those that require privacy.

A very common way in this occurs is through data aggregation.

Data aggregation is when information is retrieved from different sources and is usually put together so that one can be in a position to be analyze one by one and this helps information to be very secure. So if one is collecting data it is vital for one to know the following:

    How will one use the data that he is collecting?
    Who will mine the data and use the data.
    Is the data very secure when am out can someone come and access it.
    How can one update the data when information is needed
    If the computer crashes do I have any backup somewhere.

It is important for one to be very careful with documents which deal with company's personal information so that information cannot easily be manipulated.

source : http://ezinearticles.com/?Data-Mining---Retrieving-Information-From-Data&id=5054887

Friday, 16 December 2016

One of the Main Differences Between Statistical Analysis and Data Mining

One of the Main Differences Between Statistical Analysis and Data Mining

Two methods of analyzing data that are common in both academic and commercial fields are statistical analysis and data mining. While statistical analysis has a long scientific history, data mining is a more recent method of data analysis that has arisen from Computer Science. In this article I want to give an introduction to these methods and outline what I believe is one of the main differences between the two fields of analysis.

Statistical analysis commonly involves an analyst formulating a hypothesis and then testing the validity of this hypothesis by running statistical tests on data that may have been collected for the purpose. For example, if an analyst was studying the relationship between income level and the ability to get a loan, the analyst may hypothesis that there will be a correlation between income level and the amount of credit someone may qualify for.

The analyst could then test this hypothesis with the use of a data set that contains a number of people along with their income levels and the credit available to them. A test could be run that indicates for example that there may be a high degree of confidence that there is indeed a correlation between income and available credit. The main point here is that the analyst has formulated a hypothesis and then used a statistical test along with a data set to provide evidence in support or against that hypothesis.

Data mining is another area of data analysis that has arisen more recently from computer science that has a number of differences to traditional statistical analysis. Firstly, many data mining techniques are designed to be applied to very large data sets, while statistical analysis techniques are often designed to form evidence in support or against a hypothesis from a more limited set of data.

Probably the mist significant difference here, however, is that data mining techniques are not used so much to form confidence in a hypothesis, but rather extract unknown relationships may be present in the data set. This is probably best illustrated with an example. Rather than in the above case where a statistician may form a hypothesis between income levels and an applicants ability to get a loan, in data mining, there is not typically an initial hypothesis. A data mining analyst may have a large data set on loans that have been given to people along with demographic information of these people such as their income level, their age, any existing debts they have and if they have ever defaulted on a loan before.

A data mining technique may then search through this large data set and extract a previously unknown relationship between income levels, peoples existing debt and their ability to get a loan.

While there are quite a few differences between statistical analysis and data mining, I believe this difference is at the heart of the issue. A lot of statistical analysis is about analyzing data to either form confidence for or against a stated hypothesis while data mining is often more about applying an algorithm to a data set to extract previously unforeseen relationships.

Source:http://ezinearticles.com/?One-of-the-Main-Differences-Between-Statistical-Analysis-and-Data-Mining&id=4578250

Monday, 12 December 2016

Web Data Extraction Services

Web Data Extraction Services

Web Data Extraction from Dynamic Pages includes some of the services that may be acquired through outsourcing. It is possible to siphon information from proven websites through the use of Data Scrapping software. The information is applicable in many areas in business. It is possible to get such solutions as data collection, screen scrapping, email extractor and Web Data Mining services among others from companies providing websites such as Scrappingexpert.com.

Data mining is common as far as outsourcing business is concerned. Many companies are outsource data mining services and companies dealing with these services can earn a lot of money, especially in the growing business regarding outsourcing and general internet business. With web data extraction, you will pull data in a structured organized format. The source of the information will even be from an unstructured or semi-structured source.

In addition, it is possible to pull data which has originally been presented in a variety of formats including PDF, HTML, and test among others. The web data extraction service therefore, provides a diversity regarding the source of information. Large scale organizations have used data extraction services where they get large amounts of data on a daily basis. It is possible for you to get high accuracy of information in an efficient manner and it is also affordable.

Web data extraction services are important when it comes to collection of data and web-based information on the internet. Data collection services are very important as far as consumer research is concerned. Research is turning out to be a very vital thing among companies today. There is need for companies to adopt various strategies that will lead to fast means of data extraction, efficient extraction of data, as well as use of organized formats and flexibility.

In addition, people will prefer software that provides flexibility as far as application is concerned. In addition, there is software that can be customized according to the needs of customers, and these will play an important role in fulfilling diverse customer needs. Companies selling the particular software therefore, need to provide such features that provide excellent customer experience.

It is possible for companies to extract emails and other communications from certain sources as far as they are valid email messages. This will be done without incurring any duplicates. You will extract emails and messages from a variety of formats for the web pages, including HTML files, text files and other formats. It is possible to carry these services in a fast reliable and in an optimal output and hence, the software providing such capability is in high demand. It can help businesses and companies quickly search contacts for the people to be sent email messages.

It is also possible to use software to sort large amount of data and extract information, in an activity termed as data mining. This way, the company will realize reduced costs and saving of time and increasing return on investment. In this practice, the company will carry out Meta data extraction, scanning data, and others as well.

Source: http://ezinearticles.com/?Web-Data-Extraction-Services&id=4733722

Wednesday, 7 December 2016

Data Mining vs Screen-Scraping

Data Mining vs Screen-Scraping

Data mining isn't screen-scraping. I know that some people in the room may disagree with that statement, but they're actually two almost completely different concepts.

In a nutshell, you might state it this way: screen-scraping allows you to get information, where data mining allows you to analyze information. That's a pretty big simplification, so I'll elaborate a bit.

The term "screen-scraping" comes from the old mainframe terminal days where people worked on computers with green and black screens containing only text. Screen-scraping was used to extract characters from the screens so that they could be analyzed. Fast-forwarding to the web world of today, screen-scraping now most commonly refers to extracting information from web sites. That is, computer programs can "crawl" or "spider" through web sites, pulling out data. People often do this to build things like comparison shopping engines, archive web pages, or simply download text to a spreadsheet so that it can be filtered and analyzed.

Data mining, on the other hand, is defined by Wikipedia as the "practice of automatically searching large stores of data for patterns." In other words, you already have the data, and you're now analyzing it to learn useful things about it. Data mining often involves lots of complex algorithms based on statistical methods. It has nothing to do with how you got the data in the first place. In data mining you only care about analyzing what's already there.

The difficulty is that people who don't know the term "screen-scraping" will try Googling for anything that resembles it. We include a number of these terms on our web site to help such folks; for example, we created pages entitled Text Data Mining, Automated Data Collection, Web Site Data Extraction, and even Web Site Ripper (I suppose "scraping" is sort of like "ripping"). So it presents a bit of a problem-we don't necessarily want to perpetuate a misconception (i.e., screen-scraping = data mining), but we also have to use terminology that people will actually use.

Source: http://ezinearticles.com/?Data-Mining-vs-Screen-Scraping&id=146813

Saturday, 3 December 2016

Collecting Data With Web Scrapers

Collecting Data With Web Scrapers

There is a large amount of data available only through websites. However, as many people have found out, trying to copy data into a usable database or spreadsheet directly out of a website can be a tiring process. Data entry from internet sources can quickly become cost prohibitive as the required hours add up. Clearly, an automated method for collating information from HTML-based sites can offer huge management cost savings.

Web scrapers are programs that are able to aggregate information from the internet. They are capable of navigating the web, assessing the contents of a site, and then pulling data points and placing them into a structured, working database or spreadsheet. Many companies and services will use programs to web scrape, such as comparing prices, performing online research, or tracking changes to online content.

Let's take a look at how web scrapers can aid data collection and management for a variety of purposes.

Improving On Manual Entry Methods

Using a computer's copy and paste function or simply typing text from a site is extremely inefficient and costly. Web scrapers are able to navigate through a series of websites, make decisions on what is important data, and then copy the info into a structured database, spreadsheet, or other program. Software packages include the ability to record macros by having a user perform a routine once and then have the computer remember and automate those actions. Every user can effectively act as their own programmer to expand the capabilities to process websites. These applications can also interface with databases in order to automatically manage information as it is pulled from a website.

Aggregating Information

There are a number of instances where material stored in websites can be manipulated and stored. For example, a clothing company that is looking to bring their line of apparel to retailers can go online for the contact information of retailers in their area and then present that information to sales personnel to generate leads. Many businesses can perform market research on prices and product availability by analyzing online catalogues.

Data Management

Managing figures and numbers is best done through spreadsheets and databases; however, information on a website formatted with HTML is not readily accessible for such purposes. While websites are excellent for displaying facts and figures, they fall short when they need to be analyzed, sorted, or otherwise manipulated. Ultimately, web scrapers are able to take the output that is intended for display to a person and change it to numbers that can be used by a computer. Furthermore, by automating this process with software applications and macros, entry costs are severely reduced.

This type of data management is also effective at merging different information sources. If a company were to purchase research or statistical information, it could be scraped in order to format the information into a database. This is also highly effective at taking a legacy system's contents and incorporating them into today's systems.

Overall, a web scraper is a cost effective user tool for data manipulation and management.

source: http://ezinearticles.com/?Collecting-Data-With-Web-Scrapers&id=4223877

Friday, 28 October 2016

Tapping The Mining Services Goldmine

Tapping The Mining Services Goldmine

In Australia, resources booms tend to come and go. In a recent speech, Reserve Bank Deputy Governor Ric Battellino identified five major booms over the last two hundred years - from the gold rush of the 1850s, to our current minerals and energy boom.

Many have argued that the current boom is different from anything we've experienced before, with the modernisation of the Chinese and Indian economies likely to keep demand high for decades. That's led some analysts to talk of a resources supercycle. And yet a supercycle is still a cycle.

By definition, cycles are uneven, with commodity prices ebbing and flowing in response to demand, economic conditions and market sentiment. And the share prices of resources companies tend to move with them.

Which raises the question: what's the best way for investors to tap into the potential of the mining boom, without the heart-stopping volatility that mining stocks sometimes deliver?
Invest in the store that sells the spade

Legend has it that the people who really profited from Australia's gold rush weren't the miners who flocked to the fields, but the store-owners who sold them their spades and pans. You can put the same principle to work today by investing in mining services and engineering companies.

Here are five reasons to consider giving mining services companies a place in your portfolio:

1. Growing demand

In November, the Australian Bureau of Agricultural and Resource Economics reported that mining and energy companies plan to invest a record $132.9bn in new projects, a 58% increase from the previous year. That includes 72 projects at an advanced stage of development, such as the $43bn Gorgon LNG project and the $20bn Olympic dam expansion. The mining services sector is poised to benefit from all of them.

The sector also stands to benefit from Australia's worsening skills shortage, with more companies looking to contractors to provide essential services in remote locations.

2. Less volatility

Resource stocks tend to fluctuate with commodity prices, which are subject to international economic forces and market sentiment beyond the control of any individual company. As a result, they are among the most volatile companies on the Australian sharemarket. But mining services stocks, while still exposed to the commodities cycle, tend to be more stable.

3. More predictable cash flow

One reason for the comparative volatility of commodity companies is that their cash flow can be very variable. In the development phase, they need to make significant capital expenditure, often leading to negative cash flows. And while they enjoy healthy revenues in the production phase, that revenue may diminish as a resource is exhausted, unless they make further investments in exploration and development.
In contrast, mining services companies require comparatively little capital investment, with more predictable cash flows over the long-term.

4. Higher dividends

Predictable cash flows and lower capital expenditures often allow services companies to pay out more of their earnings as dividends, making them more appealing for income-oriented investors.

5. No need to pick winners

Many miners are highly leveraged to demand for a single commodity, whether it's gold, coal, copper or iron ore. Some are reliant on a single mine or field. Whereas services companies generally have a more diversified customer base.

Source: http://ezinearticles.com/?Tapping-The-Mining-Services-Goldmine&id=5924837

Monday, 17 October 2016

Scraping Yelp Data and How to use?

Scraping Yelp Data and How to use?

We get a lot of requests to scrape data from Yelp. These requests come in on a daily basis, sometimes several times a day. At the same time we have not seen a good business case for a commercial project with scraping Yelp.

We have decided to release a simple example Yelp robot which anyone can run on Chrome inside your computer, tune to your own requirements and collect some data. With this robot you can save business contact information like address, postal code, telephone numbers, website addresses etc.  Robot is placed in our Demo space on Web Robots portal for anyone to use, just sign up, find the robot and use it.

How to use it:

    Sign in to our portal here.
    Download our scraping extension from here.
    Find robot named Yelp_us_demo in the dropdown.
    Modify start URL to the first page of your search results. For example: http://www.yelp.com/search?find_desc=Restaurants&find_loc=Arlington,+VA,+USA
    Click Run.
    Let robot finish it’s job and download data from portal.

Some things to consider:

This robot is placed in our Demo space – therefore it is accessible to anyone. Anyone will be able to modify and run it, anyone will be able to download collected data. Robot’s code may be edited by someone else, but you can always restore it from sample code below. Yelp limits number of search results, so do not expect to scrape more results than you would normally see by search.

In case you want to create your own version of such robot, here it’s full code:

// starting URL above must be the first page of search results.
// Example: http://www.yelp.com/search?find_desc=Restaurants&find_loc=Arlington,+VA,+USA

steps.start = function () {

   var rows = [];

   $(".biz-listing-large").each (function (i,v) {
     if ($("h3 a", v).length > 0)
       {
        var row = {};
        row.company = $(".biz-name", v).text().trim();
        row.reviews =$(".review-count", v).text().trim();
        row.companyLink = $(".biz-name", v)[0].href;
        row.location = $(".secondary-attributes address", v).text().trim();
        row.phone = $(".biz-phone", v).text().trim();
        rows.push (row);
      }
   });

   emit ("yelp", rows);
   if ($(".next").length === 1) {
     next ($(".next")[0].href, "start");
   }
 done();
};

Source: https://webrobots.io/scraping-yelp-data/

Monday, 3 October 2016

An Easy Way For Data Extraction

There are so many data scraping tools are available in internet. With these tools you can you download large amount of data without any stress. From the past decade, the internet revolution has made the entire world as an information center. You can obtain any type of information from the internet. However, if you want any particular information on one task, you need search more websites. If you are interested in download all the information from the websites, you need to copy the information and pate in your documents. It seems a little bit hectic work for everyone. With these scraping tools, you can save your time, money and it reduces manual work.

The Web data extraction tool will extract the data from the HTML pages of the different websites and compares the data. Every day, there are so many websites are hosting in internet. It is not possible to see all the websites in a single day. With these data mining tool, you are able to view all the web pages in internet. If you are using a wide range of applications, these scraping tools are very much useful to you.

The data extraction software tool is used to compare the structured data in internet. There are so many search engines in internet will help you to find a website on a particular issue. The data in different sites is appears in different styles. This scraping expert will help you to compare the date in different site and structures the data for records.

And the web crawler software tool is used to index the web pages in the internet; it will move the data from internet to your hard disk. With this work, you can browse the internet much faster when connected. And the important use of this tool is if you are trying to download the data from internet in off peak hours. It will take a lot of time to download. However, with this tool you can download any data from internet at fast rate.There is another tool for business person is called email extractor. With this toll, you can easily target the customers email addresses. You can send advertisement for your product to the targeted customers at any time. This the best tool to find the database of the customers.

However, there are some more scraping tolls are available in internet. And also some of esteemed websites are providing the information about these tools. You download these tools by paying a nominal amount.

Source: http://ezinearticles.com/?An-Easy-Way-For-Data-Extraction&id=3517104

Wednesday, 28 September 2016

How to do data scraping from PDF files using PHP?

How to do data scraping from PDF files using PHP?

Situations arise when you want to scrap data from PDF or want to search PDF files for matching text. Suppose you have website where users uploads PDF files and you want to give search functionality to user which searches all uploaded PDF file content for matching text and show all PDFs that contains matching search keywords.

Or you might have all London real estate properties details in PDF report file and you want to quickly grab scrape data from PDF reports then you might need PDF scraping library.

To integrate such functionality to web application is not similar to normal search functionality that we do with database search.

Here is the straight solution for this problem. This involves PDF Data Scraping to plain text and match search terms. I have written this post for the people who want to do PDF data scraping or want to make their PDF files to be Searchable.

We are going to use class named class.pdf2text.php which converts PDF text to into ASCII text, so the class is known for PDF extraction. This PHP class ignores anything in PDF that is not a text.

Let’s see very basic example (Taken from author’s file):

<?php

include "class.pdf2text.php";

$a = new PDF2Text();
$a->setFilename('web-scraping-service.pdf'); //grab the pdf file reside in folder where PHP files resides.

$a->decodePDF();//converts PDF content to text
echo $a->output();

?>

“Web Scraping is a technique using which programmer can automate the copy paste manual work and save the time. This is PDF w eb scraping using PHP. We at Web Data Scraping offer Web Scraping and Data Scraping Service. Vist our website www.webdata-scraping.com”

For more complex extraction you can apply regular expression on the text you get and can parse text that you want from PDF. But keep in mind this has limitation and do not work with all types of PDF extraction.

But the wonderful use of this class is to make utility that allow user to search inside PDF when they search on web search bar. Last but not least, You can also find many PDF scraping software available in market that can do complex scraping from PDF files.

Source: http://webdata-scraping.com/data-scraping-pdf-files-using-php/

Thursday, 15 September 2016

Things to take care while doing Web Scraping!!!

Things to take care while doing Web Scraping!!!

In the present day and age, web scraping word becomes most popular in data science. Basically web scraping is extracting the information from the websites using pre-written programs and web scraping scripts. Many organizations have successfully used web site scraping to build relevant and useful database that they use on a daily basis to enhance their business interests. This is the age of the Big Data and web scraping is one of the trending techniques in the data science.

Throughout my journey of learning web scraping and implementing many successful scraping projects, I have come across some great experiences we can learn from.  In this post, I’m going to discuss some of the approaches to take and approaches to avoid while executing web scraping.

User Proxies: Anonymously scraping data from websites

One should not scrape website with a single IP Address. Because when you repeatedly request the web page for web scraping, there is a chance that the remote web server might block your IP address preventing further request to the web page. To overcome this situation, one should scrape websites with the help of proxy servers (anonymous scraping). This will minimize the risk of getting trapped and blacklisted by a website. Use of Proxies to hide your identity (network details) to remote web servers while scraping data. You may also use a VPN instead of proxies to anonymously scrape websites.

Take maximum data and store it.

Do not follow “process the web page as it comes from the remote server”. Instead take all the information and store it to disk. This approach will be useful when your scraping algorithm breaks in the middle. In this case you don’t have to start scraping again. Never download the same content more than once as you are just wasting bandwidth. Try and download all content to disk in one go and then do the processing.

Follow strict rules in parsing:

Check various rules while parsing the information from the web site. For example if you expect a value to be a date then check that it’s really a date. This may greatly improve the quality of information. When you get unexpected data, then the algorithm need to be changed accordingly.

Respect Robots.txt

Robots.txt specifies the set of rules that should be followed by web crawlers and robots. I strongly advise you to consider and adjust your crawler to fully respect robots.txt. Robots.txt contains instructions on the exact pages that you are allowed to crawl, user-agent, and the requisite intervals between page requests. Following to these instructions minimizes the chance of getting blacklisted and banned from website owner.

Use XPath Smartly

XPath is a nice option to select elements of the HTML document more flexibly than CSS Selectors.  Be careful about HTML structure change through page to page so one xpath you made may be failed to extract data on another page due to changes in HTML structure.

Obey Website TOC:

Some websites make it absolutely apparent in their terms and conditions that they are particularly against to web scraping activities on their content. This can make you vulnerable against possible ethical and legal implications.

Test sample scrape and verify the data with actual scrape

Once you are done with web scraping project set up, you need to test it for sometimes. Check the extracted data. If something is not good, find out the cause and make changes accordingly and finally come to a perfect web scraping project.

Source: http://webdata-scraping.com/things-take-care-web-scraping/

Tuesday, 6 September 2016

How to Use Microsoft Excel as a Web Scraping Tool

How to Use Microsoft Excel as a Web Scraping Tool

Microsoft Excel is undoubtedly one of the most powerful tools to manage information in a structured form. The immense popularity of Excel is not without reasons. It is like the Swiss army knife of data with its great features and capabilities. Here is how Excel can be used as a basic web scraping tool to extract web data directly into a worksheet. We will be using Excel web queries to make this happen.

Web queries is a feature of Excel which is basically used to fetch data on a web page into the Excel worksheet easily. It can automatically find tables on the webpage and would let you pick the particular table you need data from. Web queries can also be handy in situations where an ODBC connection is impossible to maintain apart from just extracting data from web pages. Let’s see how web queries work and how you can scrape HTML tables off the web using them.
Getting started

We’ll start with a simple Web query to scrape data from the Yahoo! Finance page. This page is particularly easier to scrape and hence is a good fit for learning the method. The page is also pretty straightforward and doesn’t have important information in the form of links or images. Here is the URL we will be using for the tutorial:

http://finance.yahoo.com/q/hp?s=GOOG

To create a new Web query:

1. Select the cell in which you want the data to appear.
2. Click on Data-> From Web
3. The New Web query box will pop up as shown below.

4. Enter the web page URL you need to extract data from in the Address bar and hit the Go button.
5. Click on the yellow-black buttons next to the table you need to extract data from.

6. After selecting the required tables, click on the Import button and you’re done. Excel will now start downloading the content of the selected tables into your worksheet.

Once you have the data scraped into your Excel worksheet, you can do a host of things like creating charts, sorting, formatting etc. to better understand or present the data in a simpler way.
Customizing the query

Once you have created a web query, you have the option to customize it according to your requirements. To do this, access Web query properties by right clicking on a cell with the extracted data. The page you were querying appears again, click on the Options button to the right of the address bar. A new pop up box will be displayed where you can customize how the web query interacts with the target page. The options here lets you change some of the basic things related to web pages like the formatting and redirections.

Apart from this, you can also alter the data range options by right clicking on a random cell with the query results and selecting Data range properties. The data range properties dialog box will pop up where you can make the required changes. You might want to rename the data range to something you can easily recognize like ‘Stock Prices’.

Auto refresh

Auto-refresh is a feature of web queries worth mentioning, and one which makes our Excel web scraper truly powerful. You can make the extracted data to be auto-refreshing so that your Excel worksheet will update the data whenever the source website changes. You can set how often you need the data to be updated from the source web page in data range options menu. The auto refresh feature can be enabled by ticking the box beside ‘Refresh every’ and setting your preferred time interval for updating the data.
Web scraping at scale

Although extracting data using Excel can be a great way to scrape html tables from the web, it is nowhere close to a real web scraping solution. This can prove to be useful if you are collecting data for your college research paper or you are a hobbyist looking for a cheap way to get your hands on some data. If data for business is your need, you will definitely have to depend on a web scraping provider with expertise in dealing with web scraping at scale. Outsourcing the complicated process that web scraping will also give you more room to deal with other things that need extra attention such as marketing your business.

Source: https://www.promptcloud.com/blog/how-to-use-excel-to-scrape-websites

Monday, 29 August 2016

Why is a Web scraping service better than Scraping tools

Why is a Web scraping service better than Scraping tools

Web scraping has been making ripples across various industries in the last few years. Newer businesses can employ web scraping to gain quick market insights and equip themselves to take on their competitors. This works like clockwork if you know how to do the analysis right. Before we jump into that, there is the technical aspect of web scraping. Should your company use a scraping tool to get the required data from the web? Although this sounds like an easy solution, there is more to it than what meets the eye. We explain why it’s better to go with a dedicated web scraping service to cover your data acquisition needs rather than going by the scraping tool route.

Cost is lowered

Although this might come as a surprise, the cost of getting data from employing a data scraping tool along with an IT personnel who can get it done would exceed the cost of a good subscription based web scraping service. Not every company has the necessary resources needed to run web scraping in-house. By depending on a Data service provider, you will save the cost of software, resources and labour required to run web crawling in the firm. Besides, you will also end up having more time and less worries. More of your time and effort can therefore go into the analysis part which is crucial to you as a business owner.

Accessibility is high with a service

Multifaceted websites make it difficult for the scraping tools to extract data. A good web scraping service on the other hand can easily deal with bottlenecks in the scraping process when it may arise. Websites to be scraped often undergo changes in their structure which calls for modification of the crawler accordingly. Unlike a scraping tool, a dedicated service will be able to extract data from complex sites that use Ajax, Javascript and the like. By going with a subscription based service, you are doing yourself the favour of not being involved in this constant headache.

Accuracy in results

A DIY scraping tool might be able to get you data, but the accuracy and relevance of the acquired data will vary. You might be able to get it right with a particular website, but that might not be the case with another. This gives uncertainty to the results of your data acquisition and could even be disastrous for your business. On the other hand, a good scraping service will give you highly refined data which is in a ready to consume form.

Outcomes are instant with a service

Considering the high resource requirements of the web scraping process, your scraping tool is likely to be much slower than a reputed service that has got the right infrastructure and resources to scrape data from the web efficiently. It might not be feasible for your firm to acquire and manage the same setup since that could affect the focus of your business.

Tidying up of Data is an exhausting process

Web scrapers collect data into a dump file which would be huge in size. You will have to do a lot of tidying up in this to get data in a usable format. With the scraping tools route, you would be looking for more tools to clean up the data collected. This is a waste of time and effort that you could use in much better aspects of your business. Whereas with a web scraping service, you won’t have to worry about cleaning up of the data as it comes with the service. You get the data in a plug and use format which gives you more time to do better things.

Many sites have policies for data scraping

Sometimes, websites that you want to scrape data from might have policies discouraging the act. You wouldn’t want to act against their policies being ignorant of their existence and get into legal trouble. With a web scraping service, you don’t have to worry about these. A well-established data scraping provider will definitely follow the rules and policies set by the website. This would mean you can be relieved of such worries and go ahead with finding trends and ideas from the data that they provide.

More time to analyse the data

This is so far the best advantage of going with a scraping service rather than a tool. Since all the things related to data acquisition is dealt by the scraping service provider, you would have more time for analysing and deriving useful business decisions from this data. Being the business owner, analysing the data with care should be your highest priority. Since using a scraping tool to acquire data will cost you more time and effort, the analysis part is definitely going to suffer which defies your whole purpose.

Bottom line

It is up to you to choose between a web scraping tool and a dedicated scraping service. Being the business owner, it i s much better for you to stay away from the technical aspects of web scraping and focus on deriving a better business strategy from the data. When you have made up your mind to go with a data scraping service, it is important to choose the right web scraping service for maximum benefits.

Source: https://www.promptcloud.com/blog/web-scraping-services-better-than-scraping-tools

Wednesday, 17 August 2016

ERP Data Conversions - Best Practices and Steps

ERP Data Conversions - Best Practices and Steps

Every company who has gone through an ERP project has gone through the painful process of getting the data ready for the new system. The process of executing this typically goes through the following steps:

(1) Extract or define

(2) Clean and transform

(3) Load

(4) Validate and verify

This process is typically executed multiple times (2 - 5+ times depending on complexity) through an ERP project to ensure that the good data ends up in the new system. If the data is either incorrect, not well enough cleaned or adjusted or loaded incorrectly in to the new system it can cause serious problems as the new system is launched.

(1) Extract or define

This involves extracting the data from legacy systems, which are to be decommissioned. In some cases the data may not exist in a legacy system, as the old process may be spreadsheet-based and has to be created from scratch. Typically this involves creating some extraction programs or leveraging existing reports to get the data in to a format which can be put in to a spreadsheet or a data management application.

(2) Data cleansing

Once extracted it normally reviewed is for accuracy by the business, supported by the IT team, and/or adjusted if incorrect or in a structure which the new ERP system does not understand. Depending on the level of change and data quality this can represent a significant effort involving many business stakeholders and required to go through multiple cycles.

(3) Load data to new system

As the data gets structured to a format which the receiving ERP system can handle the load programs may also be build to handle certain changes as part of the process of getting the data converted in to the new system. Data is loaded in to interface tables and loaded in to the new system's core master data and transactions tables.

When loading the data in to the new system the inter-dependency of the different data elements is key to consider and validate the cross dependencies. Exceptions are dealt with and go in to lessons learned and to modify extracts, data cleansing or load process in to the next cycle.

(4) Validate and verify

The final phase of the data conversion process is to verify the converted data through extracts, reports or manually to ensure that all the data went in correctly. This may also include both internal and external audit groups and all the key data owners. Part of the testing will also include attempting to transact using the converted data successfully.

The topmost success factors or best practices to execute a successful conversion I would prioritize as follows:

(1) Start the data conversion early enough by assessing the quality of the data. Starting too late can result in either costly project delays or decisions to load garbage and "deal with it later" resulting in an increase in problems as the new system is launched.

(2) Identify and assign data owners and customers (often forgotten) for the different elements. Ensure that not only the data owners sign-off on the data conversions but that also the key users of the data are involved in reviewing the selection criteria's, data cleansing process and load verification.

(3) Run sufficient enough rounds of testing of the data, including not only validating the loads but also transacting with the converted data.

(4) Depending on the complexity, evaluate possible tools beyond spreadsheets and custom programming to help with the data conversion process for cleansing, transformation and load process.

(5) Don't under-estimate the effort in cleansing and validating the converted data.

(6) Define processes and consider other tools to help how the accuracy of the data will be maintained after the system goes live.

Source: http://ezinearticles.com/?ERP-Data-Conversions---Best-Practices-and-Steps&id=7263314

Monday, 8 August 2016

Getting Data from the Web

Getting Data from the Web

You’ve tried everything else, and you haven’t managed to get your hands on the data you want. You’ve found the data on the web, but, alas — no download options are available and copy-paste has failed you. Fear not, there may still be a way to get the data out. For example you can:

Get data from web-based APIs, such as interfaces provided by online databases and many modern web applications (including Twitter, Facebook and many others). This is a fantastic way to access government or commercial data, as well as data from social media sites.

Extract data from PDFs. This is very difficult, as PDF is a language for printers and does not retain much information on the structure of the data that is displayed within a document. Extracting information from PDFs is beyond the scope of this book, but there are some tools and tutorials that may help you do it.

Screen scrape web sites. During screen scraping, you’re extracting structured content from a normal web page with the help of a scraping utility or by writing a small piece of code. While this method is very powerful and can be used in many places, it requires a bit of understanding about how the web works.

With all those great technical options, don’t forget the simple options: often it is worth to spend some time searching for a file with machine-readable data or to call the institution which is holding the data you want.

In this chapter we walk through a very basic example of scraping data from an HTML web page.
What is machine-readable data?

The goal for most of these methods is to get access to machine-readable data. Machine readable data is created for processing by a computer, instead of the presentation to a human user. The structure of such data relates to contained information, and not the way it is displayed eventually. Examples of easily machine-readable formats include CSV, XML, JSON and Excel files, while formats like Word documents, HTML pages and PDF files are more concerned with the visual layout of the information. PDF for example is a language which talks directly to your printer, it’s concerned with position of lines and dots on a page, rather than distinguishable characters.
Scraping web sites: what for?

Everyone has done this: you go to a web site, see an interesting table and try to copy it over to Excel so you can add some numbers up or store it for later. Yet this often does not really work, or the information you want is spread across a large number of web sites. Copying by hand can quickly become very tedious, so it makes sense to use a bit of code to do it.

The advantage of scraping is that you can do it with virtually any web site — from weather forecasts to government spending, even if that site does not have an API for raw data access.
What you can and cannot scrape

There are, of course, limits to what can be scraped. Some factors that make it harder to scrape a site include:

Badly formatted HTML code with little or no structural information e.g. older government websites.

Authentication systems that are supposed to prevent automatic access e.g. CAPTCHA codes and paywalls.

Session-based systems that use browser cookies to keep track of what the user has been doing.

A lack of complete item listings and possibilities for wildcard search.

Blocking of bulk access by the server administrators.

Another set of limitations are legal barriers: some countries recognize database rights, which may limit your right to re-use information that has been published online. Sometimes, you can choose to ignore the license and do it anyway — depending on your jurisdiction, you may have special rights as a journalist. Scraping freely available Government data should be fine, but you may wish to double check before you publish. Commercial organizations — and certain NGOs — react with less tolerance and may try to claim that you’re “sabotaging” their systems. Other information may infringe the privacy of individuals and thereby violate data privacy laws or professional ethics.
Tools that help you scrape

There are many programs that can be used to extract bulk information from a web site, including browser extensions and some web services. Depending on your browser, tools like Readability (which helps extract text from a page) or DownThemAll (which allows you to download many files at once) will help you automate some tedious tasks, while Chrome’s Scraper extension was explicitly built to extract tables from web sites. Developer extensions like FireBug (for Firefox, the same thing is already included in Chrome, Safari and IE) let you track exactly how a web site is structured and what communications happen between your browser and the server.

ScraperWiki is a web site that allows you to code scrapers in a number of different programming languages, including Python, Ruby and PHP. If you want to get started with scraping without the hassle of setting up a programming environment on your computer, this is the way to go. Other web services, such as Google Spreadsheets and Yahoo! Pipes also allow you to perform some extraction from other web sites.
How does a web scraper work?

Web scrapers are usually small pieces of code written in a programming language such as Python, Ruby or PHP. Choosing the right language is largely a question of which community you have access to: if there is someone in your newsroom or city already working with one of these languages, then it makes sense to adopt the same language.

While some of the click-and-point scraping tools mentioned before may be helpful to get started, the real complexity involved in scraping a web site is in addressing the right pages and the right elements within these pages to extract the desired information. These tasks aren’t about programming, but understanding the structure of the web site and database.

When displaying a web site, your browser will almost always make use of two technologies: HTTP is a way for it to communicate with the server and to request specific resource, such as documents, images or videos. HTML is the language in which web sites are composed.
The anatomy of a web page

Any HTML page is structured as a hierarchy of boxes (which are defined by HTML “tags”). A large box will contain many smaller ones — for example a table that has many smaller divisions: rows and cells. There are many types of tags that perform different functions — some produce boxes, others tables, images or links. Tags can also have additional properties (e.g. they can be unique identifiers) and can belong to groups called ‘classes’, which makes it possible to target and capture individual elements within a document. Selecting the appropriate elements this way and extracting their content is the key to writing a scraper.

Viewing the elements in a web page: everything can be broken up into boxes within boxes.

To scrape web pages, you’ll need to learn a bit about the different types of elements that can be in an HTML document. For example, the <table> element wraps a whole table, which has <tr> (table row) elements for its rows, which in turn contain <td> (table data) for each cell. The most common element type you will encounter is <div>, which can basically mean any block of content. The easiest way to get a feel for these elements is by using the developer toolbar in your browser: they will allow you to hover over any part of a web page and see what the underlying code is.

Tags work like book ends, marking the start and the end of a unit. For example <em> signifies the start of an italicized or emphasized piece of text and </em> signifies the end of that section. Easy.

An example: scraping nuclear incidents with Python

NEWS is the International Atomic Energy Agency’s (IAEA) portal on world-wide radiation incidents (and a strong contender for membership in the Weird Title Club!). The web page lists incidents in a simple, blog-like site that can be easily scraped.

To start, create a new Python scraper on ScraperWiki and you will be presented with a text area that is mostly empty, except for some scaffolding code. In another browser window, open the IAEA site and open the developer toolbar in your browser. In the “Elements” view, try to find the HTML element for one of the news item titles. Your browser’s developer toolbar helps you connect elements on the web page with the underlying HTML code.

Investigating this page will reveal that the titles are <h4> elements within a <table>. Each event is a <tr> row, which also contains a description and a date. If we want to extract the titles of all events, we should find a way to select each row in the table sequentially, while fetching all the text within the title elements.

In order to turn this process into code, we need to make ourselves aware of all the steps involved. To get a feeling for the kind of steps required, let’s play a simple game: In your ScraperWiki window, try to write up individual instructions for yourself, for each thing you are going to do while writing this scraper, like steps in a recipe (prefix each line with a hash sign to tell Python that this not real computer code). For example:

  # Look for all rows in the table
  # Unicorn must not overflow on left side.

Try to be as precise as you can and don’t assume that the program knows anything about the page you’re attempting to scrape.

Once you’ve written down some pseudo-code, let’s compare this to the essential code for our first scraper:

  import scraperwiki
  from lxml import html

In this first section, we’re importing existing functionality from libraries — snippets of pre-written code. scraperwiki will give us the ability to download web sites, while lxml is a tool for the structured analysis of HTML documents. Good news: if you are writing a Python scraper with ScraperWiki, these two lines will always be the same.

  url = "http://www-news.iaea.org/EventList.aspx"
  doc_text = scraperwiki.scrape(url)
  doc = html.fromstring(doc_text)

Next, the code makes a name (variable): url, and assigns the URL of the IAEA page as its value. This tells the scraper that this thing exists and we want to pay attention to it. Note that the URL itself is in quotes as it is not part of the program code but a string, a sequence of characters.

We then use the url variable as input to a function, scraperwiki.scrape. A function will provide some defined job — in this case it’ll download a web page. When it’s finished, it’ll assign its output to another variable, doc_text. doc_text will now hold the actual text of the website — not the visual form you see in your browser, but the source code, including all the tags. Since this form is not very easy to parse, we’ll use another function, html.fromstring, to generate a special representation where we can easily address elements, the so-called document object model (DOM).

  for row in doc.cssselect("#tblEvents tr"):
  link_in_header = row.cssselect("h4 a").pop()
  event_title = link_in_header.text
  print event_title

In this final step, we use the DOM to find each row in our table and extract the event’s title from its header. Two new concepts are used: the for loop and element selection (.cssselect). The for loop essentially does what its name implies; it will traverse a list of items, assigning each a temporary alias (row in this case) and then run any indented instructions for each item.

The other new concept, element selection, is making use of a special language to find elements in the document. CSS selectors are normally used to add layout information to HTML elements and can be used to precisely pick an element out of a page. In this case (Line. 6) we’re selecting #tblEvents tr which will match each <tr> within the table element with the ID tblEvents (the hash simply signifies ID). Note that this will return a list of <tr> elements.

As can be seen on the next line (Line. 7), where we’re applying another selector to find any <a> (which is a hyperlink) within a <h4> (a title). Here we only want to look at a single element (there’s just one title per row), so we have to pop it off the top of the list returned by our selector with the .pop() function.

Note that some elements in the DOM contain actual text, i.e. text that is not part of any markup language, which we can access using the [element].text syntax seen on line 8. Finally, in line 9, we’re printing that text to the ScraperWiki console. If you hit run in your scraper, the smaller window should now start listing the event’s names from the IAEA web site.

  figs/incoming/04-DD.png
  Figure 58. A scraper in action (ScraperWiki)

You can now see a basic scraper operating: it downloads the web page, transforms it into the DOM form and then allows you to pick and extract certain content. Given this skeleton, you can try and solve some of the remaining problems using the ScraperWiki and Python documentation:

Can you find the address for the link in each event’s title?

Can you select the small box that contains the date and place by using its CSS class name and extract the element’s text?

ScraperWiki offers a small database to each scraper so you can store the results; copy the relevant example from their docs and adapt it so it will save the event titles, links and dates.

The event list has many pages; can you scrape multiple pages to get historic events as well?

As you’re trying to solve these challenges, have a look around ScraperWiki: there are many useful examples in the existing scrapers — and quite often, the data is pretty exciting, too. This way, you don’t need to start off your scraper from scratch: just choose one that is similar, fork it and adapt to your problem.

Source: http://datajournalismhandbook.org/1.0/en/getting_data_3.html

Thursday, 4 August 2016

Are You Screen Scraping or Data Mining?

Are You Screen Scraping or Data Mining?

Many of us seem to use these terms interchangeably but let’s make sure we are clear about the differences that make each of these approaches different from the other.

Basically, screen scraping is a process where you use a computer program or software to extract information from a website.  This is different than crawling, searching or mining a site because you are not indexing everything on the page – a screen scraper simply extracts precise information selected by the user.  Screen scraping is a useful application when you want to do real-time, price and product comparisons, archive web pages, or acquire data sets that you want to evaluate or filter.

When you perform screen scraping, you are able to scrape data more directly and, you can automate the process if you are using the right solution. Different types of screen scraping services and solutions offer different ways of obtaining information. Some look directly at the html code of the webpage to grab the data while others use more advanced, visual abstraction techniques that can often avoid “breakage” errors when the web source experiences a programming or code change.

On the other hand, data mining is basically the process of automatically searching large amounts of information and data for patterns. This means that you already have the information and what you really need to do is analyze the contents to find the useful things you need. This is very different from screen scraping as screen scraping requires you to look for the data, collect it and then you can analyze it.

Data mining also involves a lot of complicated algorithms often based on various statistical methods. This process has nothing to do with how you obtain the data. All it cares about is analyzing what is available for evaluation.

Screen scraping is often mistaken for data mining when, in fact, these are two different things. Today, there are online services that offer screen scraping. Depending on what you need, you can have it custom tailored to meet your specific needs and perform precisely the tasks you want. But screen scraping does not guarantee any kind of analysis of the data.

Source: http://www.connotate.com/are-you-screen-scraping-or-data-mining/

Saturday, 30 July 2016

Tips for scraping business directories

Tips for scraping business directories

Are you looking to scrape business directories to generate leads?

Here are a few tips for scraping business directories.

Web scraping is not rocket science. But there are good and bad and worst ways of doing it.

Generating sales qualified leads is always a headache. The old school ways are to buy a list from sites like Data.com. But they are quite expensive.

Scraping business directories can help generate sales qualified leads. The following tips can help you scrape data from business directories efficiently.

1) Choose a good framework to write the web scrapers. This can help save a lot of time and trouble. Python Scrapy is our favourite, but there are other non-pythonic frameworks too.

2) The business directories might be having anti-scraping mechanisms. You have to use IP rotating services to do the scrape. Using IP rotating services, crawl with multiple changing IP addresses which can cover your tracks.

3) Some sites really don’t want you to scrape and they will block the bot. In these cases, you may need to disguise your web scraper as a human being. Browser automation tools like selenium can help you do this.

4) Web sites will update their data quite often. The scraper bot should be able to update the data according to the changes. This is a hard task and you need professional services to do that.

One of the easiest ways to generate leads is to scrape from business directories and use enrich them. We made Leadintel for lead research and enrichment.

Source: http://blog.datahut.co/tips-for-scraping-business-directories/

Tuesday, 12 July 2016

4 Web Scraping Tools To Save You Time On Data Extraction

Either you are working on a product website, struggling to add live data feed to your app or merely need to pull out a huge amount of online data for analysis, an accurate web scraping tool can save you loads of time and keep you sane. Here are four powerful web scraping tools to save you from copy-pasting or spending time on writing your own scripts.

Uipath  specializes in developing various process automation software including web scraping and screen scraping software for desktop and web. Uipath web scraper is perfect for non-coders and easily surpasses most common data extraction challenges including page navigation, digging through flash and even scraping PDF files. All you need to do is open the web scraping wizard and simply highlight the data you need to extract. The tool will scrape all the data following this pattern at all pages you’ve chosen and sort it accordingly. You can add as many items for scraping as you like and have them sorted in respective columns. As a result, you receive a neat Excel or CSV document with all the data eliminated from duplicates.

Moreover, Uipath isn’t just about scraping. This software can be used not only for extracting data, but to manipulate the interface of another app, thus establishing data transfers among the two of them. Basically, this tool could be used to conduct any repetitive task a human could do, yet much faster and with higher accuracy.

Pros: You can automate form filling, clicking buttons, navigation etc. Uipath scraper is impressively accurate, fast and simple to use. It “reads” all types of data on screen (JS, HTML, Silverlight and more), plus you can train the software to emulate human actions of various complexity.

Cons: Premium software runs at a premium price. Uipath is an affordable professional solution, but may be a bit too pricey for personal use.

 Import.io  offers you a free desktop app to help you scrap all the data you need from an unlimited amount of web pages. The service treats each page as a potential data source to generate API from. If the page you’ve submitted has been previously processed, you can access its API and get some of the data. In other case, Import.io will guide you through the process of creating the scraping matrix by building connectors (for navigation) or extractors (to pull out the needed data). Afterwards, you submit a request for extraction and it’s typically processed within 24 hours. All the data is private and you can schedule auto refreshments at any chosen period of time.

Pros: The service is easy-to-use with no tech skills needed. It can  pages with data (those that needed login/pass), plus it’s free. Minimalistic effective design and simple navigation comes along.

Cons: Improt.io has hard times navigating through combinations of javascript/POST and cannot navigate from one page to another (e.g. click next, second page etc).  Sometimes, it takes over 24 hours to receive the report.  Besides, it’s a browser-only app, non-compatible with other applications.

Kimono is a popular web scraper among app developers who prefer to power up their products with live data and no additional code. It saves you tons of time when you need to fill up your app with mashing data. Install Kimono Browser bookmarklet; highlight page elements you need to and provide some positive/negative examples to train the tool. After labeling all the data you can download it in CSV/JSON/a web endpoint format. The APIs created for your pages are stored in the cloud and you can run them on schedule. So far, Kimono is free to use with pro and enterprise solutions to be launched soon.

Pros: The tool works pretty fast and works great with scraping newsfeeds and prices. The data is rather accurate.

Cons: No page navigation available and you need to spend quite a lot of time to train Kimono before it starts to pull out the multi items data accurate enough. In general, I’d say Kimono is more of an app mash-ups creator than a full-scale web scraper.

 Screen Scraper  is pretty neat and tackles a lot of difficult tasks including navigation and precise data extractions, however it requires a bit of programming/tokenization skills if you’d like to run it super smooth. Launch the software, add a proxy, start recording the list of your actions and creating extracting patterns (some coding required). Works great with HTML and Javascript, however you should test it with Citrix and other platforms. Basically, screen scraper helps you writing simple web scraping scripts and lets you download the extracted data in txt/csv/excel format.

Pros: When set correctly, there’s no data extraction tasks Screen scraper fails to handle.
Cons: The tool is pricey and you’ll have to go through documentation and have basic coding skills to use it.

Source URL :  http://tech.co/4-web-scraping-tools-save-time-data-extraction-2015-03

Thursday, 7 July 2016

ECJ clarifies Database Directive scope in screen scraping case

EC on the legal protection of databases (Database Directive) in a case concerning the extraction of data from a third party’s website by means of automated systems or software for commercial purposes (so called 'screen scraping').

Flight data extracted

The case, Ryanair Ltd vs. PR Aviation BV, C-30/14, is of interest to a range of companies such as price comparison websites. It stemmed from  Dutch company PR Aviation operation of a website where consumers can search through flight data of low-cost airlines  (including Ryanair), compare prices and, on payment of a commission, book a flight. The relevant flight data is extracted from third-parties’ websites by means of ‘screen scraping’ practices.

Ryanair claimed that PR Aviation’s activity:

• amounted to infringement of copyright (relating to the structure and architecture of the database) and of the so-called sui generis database right (i.e. the right granted to the ‘maker’ of the database where certain investments have been made to obtain, verify, or present the contents of a database) under the Netherlands law implementing the Database Directive;

• constituted breach of contract. In this respect, Ryanair claimed that a contract existed with PR Aviation for the use of its website. Access to the latter requires acceptance, by clicking a box, of the airline’s general terms and conditions which, amongst others, prohibit unauthorized ‘screen scraping’ practices for commercial purposes.

Ryanair asked Dutch courts to prohibit the infringement and order damages. In recent years the company has been engaged in several legal cases against web scrapers across Europe.

The Local Court, Utrecht, and the Court of Appeals of Amsterdam dismissed Ryanair’s claims on different grounds. The Court of Appeals, in particular, cited PR Aviation’s screen scraping of Ryanair’s website as amounting to a “normal use” of said website within the meaning of the lawful user exceptions under Sections 6 and 8 of the Database Directive, which cannot be derogated by contract (Section 15).

Ryanair appealed

Ryanair appealed the decision before the Netherlands Supreme Court (Hoge Raad der Nederlanden), which decided to refer the following question to the ECJ for a preliminary ruling: “Does the application of [Directive 96/9] also extend to online databases which are not protected by copyright on the basis of Chapter II of said directive or by a sui generis right on the basis of Chapter III, in the sense that the freedom to use such databases through the (whether or not analogous) application of Article[s] 6(1) and 8, in conjunction with Article 15 [of Directive 96/9] may not be limited contractually?.”

The ECJ’s ruling

The ECJ (without the need of the opinion of the advocate general) ruled that the Database Directive is not applicable to databases which are not protected either by copyright or by the sui generis database right. Therefore, exceptions to restricted acts set forth by Sections 6 and 8 of the Directive do not prevent the database owner from establishing contractual limitations on its use by third parties. In other words, restrictions to the freedom to contract set forth by the Database Directive do not apply in cases of unprotected databases. Whether Ryanair’s website may be entitled to copyright or sui generis database right protection needs to be determined by the competent national court.

The ECJ’s decision is not particularly striking from a legal standpoint. Yet, it could have a significant impact on the business model of price comparison websites, aggregators, and similar businesses. Owners of databases that could not rely on intellectual property protection may contractually prevent extraction and use (“scraping”) of content from their online databases. Thus, unprotected databases could receive greater protection than the one granted by IP law.

Antitrust implications

However, the lawfulness of contractual restrictions prohibiting access and reuse of data through screen scraping practices should be assessed under an antitrust perspective. In this respect, in 2013 the Court of Milan ruled that Ryanair’s refusal to grant access to its database to the online travel agency Viaggiare S.r.l. amounted to an abuse of dominant position in the downstream market of information and intermediation on flights (decision of June 4, 2013 Viaggiare S.r.l. vs Ryanair Ltd). Indeed, a balance should be struck between the need to compensate the efforts and investments made by the creator of the database with the interest of third parties to be granted with access to information (especially in those cases where the latter are not entitled to copyright protection).

Additionally, web scraping triggers other issues which have not been considered by the ECJ’s ruling. These include, but are not limited to trademark law (i.e., whether the use of a company’s names/logos by the web scraper without consent may amount to trademark infringement), data protection (e.g., in case the scraping involves personal data), or unfair competition.


Source URL :http://yellowpagesdatascraping.blogspot.in/2015/07/ecj-clarifies-database-directive-scope.html

Friday, 1 July 2016

An Easy Way For Data Extraction

There are so many data scraping tools are available in internet. With these tools you can you download large amount of data without any stress. From the past decade, the internet revolution has made the entire world as an information center. You can obtain any type of information from the internet. However, if you want any particular information on one task, you need search more websites. If you are interested in download all the information from the websites, you need to copy the information and pate in your documents. It seems a little bit hectic work for everyone. With these scraping tools, you can save your time, money and it reduces manual work.

The Web data extraction tool will extract the data from the HTML pages of the different websites and compares the data. Every day, there are so many websites are hosting in internet. It is not possible to see all the websites in a single day. With these data mining tool, you are able to view all the web pages in internet. If you are using a wide range of applications, these scraping tools are very much useful to you.

The data extraction software tool is used to compare the structured data in internet. There are so many search engines in internet will help you to find a website on a particular issue. The data in different sites is appears in different styles. This scraping expert will help you to compare the date in different site and structures the data for records.

And the web crawler software tool is used to index the web pages in the internet; it will move the data from internet to your hard disk. With this work, you can browse the internet much faster when connected. And the important use of this tool is if you are trying to download the data from internet in off peak hours. It will take a lot of time to download. However, with this tool you can download any data from internet at fast rate.There is another tool for business person is called email extractor. With this toll, you can easily target the customers email addresses. You can send advertisement for your product to the targeted customers at any time. This the best tool to find the database of the customers.

 Source  URL : http://ezinearticles.com/?An-Easy-Way-For-Data-Extraction&id=3517104