Friday, 3 July 2015

Web Scraping : To Scrape or Not to Scrape?

Web scraping is on the rise and its legality is being debated. The future of big data could hang in the balance.

I decided that I might want to stop writing about all these successful dot-com businesses and get into the act myself. I mean, how hard could it be, aside from the fact that I have no expertise in any particular vertical, no technological knowledge, and no money? That last was a bit of a problem because I was going to need big data, and big data doesn't come cheap.

So, one day I'm talking to a direct-tech wizard and he says, “Why don't you just find a business you want to be in, find the most successful company, go to their website, and scrape some of their data?”

Scrape? My dad was a house painter. I used to help him during summers. The only scraping I knew was done with a putty knife. But that's what God invented the Internet for. Google turned up endless Web scraping services and I went to one called Automation Anywhere.

Its homepage told me not to try scraping on my own, that I could pay them as little as $1,995 for a program that would have me scraping away in minutes with no programming expertise. A video showed me how. Suppose I wanted to locate all the assisted living facilities in Detroit? (Bedpans! There's a wide-open Web business!) Automation Anywhere showed me how I could request a data pattern—name, address, phone, and service area of targets—apply their program to a rehab facility listing, and minutes later be in possession of tidy customer list on a spreadsheet. A box popped up asking if I had any questions for a live account manager. I did.

“I'm interested in this, but is it totally legal?” I asked Shine, the account rep.

Shine was slow to respond and came back disappointingly noncommittal: “You need to install the software at your end. Hence, you will need to check at your end for legal documents for the website.”

Shine had obviously been reading the same European news sites that I had. Last year Irish airline Ryanair filed suit against PR Aviation, a Dutch airfare comparison site, charging it with copyright infringement and breach of contract for scraping flight data from its site. The Court of Justice of the European Union (ECJ) dismissed the suit, saying the scraping amounted to “normal use” of a website. However, the ECJ did potentially leave the door open for businesses with unprotected databases, such as Ryanair, to establish contractual limitations on use of their databases by third parties. That opening, should it be entered into by airlines, might have businesses such as Expedia, Orbitz, and Priceline reimagining their business plans.

And it could have any other businesses that load up third-party data files through scraping activities doing the same. The reality, however, is that that's a big “and.”

“The airlines have been halfway successful taking travel agents to court, but it can take five years and then they lose,” said Gus Cunningham, CEO of ScrapeSentry, one of only “three and a half” companies, in his words, that block scrapers from websites.

Professional scrapers are not only out-front and plentiful—as the Google search demonstrated—they're also nimble and expensive to chase away. Basically, Cunningham said, it's a matter of stopping scrapers at the website door among the airlines, e-coms, real estate sites, and online gambling companies that are scraped the most. Cunningham's company monitors inbound Web traffic and uses an analysis engine to block suspect visitors per parameters set down by clients. ScanSentry has a nine-year-old database that helps it identify bad actors, much like Interpol with its criminal database. Then a human element must enter the process.

Some of Cunningham's clients feed bogus information to competitors identified as scrapers to ferret them out. In many cases, though, they opt to turn their heads. “Airlines have some flights where they just want to get as many butts as they can in the seats, so they won't concentrate their blocking efforts on those. They'll concentrate on the routes that are always jammed,” Cunningham said.

Unlike botnets that steal money by, say, serving bogus websites to siphon off programmatic ad dollars, scraping is not overtly criminal. In the wide sphere of digital commerce, it's probably most common that the scrap-ee is also a scrap-er. How vigilant vulnerable industries become, and how protective courts and law enforcement agencies grow, will depend on how much scraping activity increases. Cunningham said it's growing fast. More than one fifth of visitors to client websites last year were scrapers, according to a ScanSentry study. Among travel companies, meanwhile, scrapers doubled from 15% in 2013 to 33% last year.

“And,” Cunningham noted, “It is stealing.”

Source: http://www.dmnews.com/direct-line-blog/to-scrape-or-not-to-scrape/article/422662/

Thursday, 25 June 2015

Data Scraping - About Hand Scraped Flooring

Hand scraped hardwood flooring is one of the best floors that you can install in your house.

Advantages of Hand Scraped Hardwood Flooring

The product comes with a number of advantages which include:

Antique and modern technology: The floor professionally brings out the best elements of both antique and modern technology. The modern elements are in the quality of the product.

Unique patterns: Who doesn't want to be unique? These floors allow you to create your unique design. If you are going to use a machine, all you need to do is to set the machine such that it creates the pattern that you want. If the floor will be scraped by a craftsman, you should ask the craftsman to craft your desired pattern.

Character: The different depths in the floor provide you with character and color that you can't find in other types of floors. As the sun changes its angle during the day, the nooks and valleys on the board lit differently thus providing your board with an endless rich appearance.

Durability: Experts have been able to show that hand-scraped hardwood retains its look for a long time. If your kid or pet hits the floor, the dent just blends with the rest of the character making it hard for people to tell that there is a dent.

Making the floors shine again

Although, the scraped floors are designed to look worn and aged, they are made from modern wood which needs to be taken care of in order to retain its original look.

To make the floors shine again you need to remove all the dust and dirt that might be causing the wood to look dull.

After doing this you should mix 1 gallon of warm water with ½ teaspoon of dishwashing detergent and use it to clean the surface of the floor. The aim of doing this is to remove any stains that might be on the floor. When you complete doing this you should dampen the piece of cloth with club soda and then use another piece of cloth to buff the wood until it shines.

Conclusion

This is what you need to know about hand scraped hardwood flooring. When cleaning the floors you should avoid using oil based soaps as they dull the surface making your efforts worthless.

If the above method of shining the floor doesn't work, you should mix one part white vinegar and one part of cooking oil and use it to clean the floor.

Source: http://ezinearticles.com/?About-Hand-Scraped-Flooring&id=8990255

Saturday, 20 June 2015

Rvest: easy web scraping with R

Rvest is new package that makes it easy to scrape (or harvest) data from html web pages, by libraries like beautiful soup. It is designed to work with magrittr so that you can express complex operations as elegant pipelines composed of simple, easily understood pieces. Install it with:

install.packages("rvest")

rvest in action

To see rvest in action, imagine we’d like to scrape some information about The Lego Movie from IMDB. We start by downloading and parsing the file with html():

library(rvest)

lego_movie <- html("http://www.imdb.com/title/tt1490017/")

To extract the rating, we start with selectorgadget to figure out which css selector matches the data we want: strong span. (If you haven’t heard of selectorgadget, make sure to read vignette("selectorgadget") – it’s the easiest way to determine which selector extracts the data that you’re interested in.) We use html_node() to find the first node that matches that selector, extract its contents with html_text(), and convert it to numeric with as.numeric():

lego_movie %>%

  html_node("strong span") %>%
  html_text() %>%
  as.numeric()

#> [1] 7.9

We use a similar process to extract the cast, using html_nodes() to find all nodes that match the selector:

lego_movie %>%

  html_nodes("#titleCast .itemprop span") %>%
  html_text()

#>  [1] "Will Arnett"     "Elizabeth Banks" "Craig Berry"   

#>  [4] "Alison Brie"     "David Burrows"   "Anthony Daniels"

#>  [7] "Charlie Day"     "Amanda Farinos"  "Keith Ferguson"

#> [10] "Will Ferrell"    "Will Forte"      "Dave Franco"   

#> [13] "Morgan Freeman"  "Todd Hansen"     "Jonah Hill"

The titles and authors of recent message board postings are stored in a the third table on the page. We can use html_node() and [[ to find it, then coerce it to a data frame with html_table():

lego_movie %>%

  html_nodes("table") %>%
  .[[3]] %>%
  html_table()

#>                                              X 1            NA

#> 1 this movie is very very deep and philosophical   mrdoctor524

#> 2 This got an 8.0 and Wizard of Oz got an 8.1...  marr-justinm

#> 3                         Discouraging Building?       Laestig

#> 4                              LEGO - the plural      neil-476

#> 5                                 Academy Awards   browncoatjw

#> 6                    what was the funniest part? actionjacksin

Other important functions

    If you prefer, you can use xpath selectors instead of css: html_nodes(doc, xpath = "//table//td")).

    Extract the tag names with html_tag(), text with html_text(), a single attribute with html_attr() or all attributes with html_attrs().

    Detect and repair text encoding problems with guess_encoding() and repair_encoding().
    Navigate around a website as if you’re in a browser with html_session(), jump_to(), follow_link(), back(), and forward(). Extract, modify and submit forms with html_form(), set_values() and submit_form(). (This is still a work in progress, so I’d love your feedback.)

To see these functions in action, check out package demos with demo(package = "rvest").

Source: http://www.r-bloggers.com/rvest-easy-web-scraping-with-r/

Monday, 8 June 2015

Web Scraping : Data Mining vs Screen-Scraping

Data mining isn't screen-scraping. I know that some people in the room may disagree with that statement, but they're actually two almost completely different concepts.

In a nutshell, you might state it this way: screen-scraping allows you to get information, where data mining allows you to analyze information. That's a pretty big simplification, so I'll elaborate a bit.

The term "screen-scraping" comes from the old mainframe terminal days where people worked on computers with green and black screens containing only text. Screen-scraping was used to extract characters from the screens so that they could be analyzed. Fast-forwarding to the web world of today, screen-scraping now most commonly refers to extracting information from web sites. That is, computer programs can "crawl" or "spider" through web sites, pulling out data. People often do this to build things like comparison shopping engines, archive web pages, or simply download text to a spreadsheet so that it can be filtered and analyzed.

Data mining, on the other hand, is defined by Wikipedia as the "practice of automatically searching large stores of data for patterns." In other words, you already have the data, and you're now analyzing it to learn useful things about it. Data mining often involves lots of complex algorithms based on statistical methods. It has nothing to do with how you got the data in the first place. In data mining you only care about analyzing what's already there.

The difficulty is that people who don't know the term "screen-scraping" will try Googling for anything that resembles it. We include a number of these terms on our web site to help such folks; for example, we created pages entitled Text Data Mining, Automated Data Collection, Web Site Data Extraction, and even Web Site Ripper (I suppose "scraping" is sort of like "ripping"). So it presents a bit of a problem-we don't necessarily want to perpetuate a misconception (i.e., screen-scraping = data mining), but we also have to use terminology that people will actually use.

Source: http://ezinearticles.com/?Data-Mining-vs-Screen-Scraping&id=146813

Tuesday, 2 June 2015

Getting Data from the Web Scraping

You’ve tried everything else, and you haven’t managed to get your hands on the data you want. You’ve found the data on the web, but, alas — no download options are available and copy-paste has failed you. Fear not, there may still be a way to get the data out. For example you can:

•    Get data from web-based APIs, such as interfaces provided by online databases and many modern web applications (including Twitter, Facebook and many others). This is a fantastic way to access government or commercial data, as well as data from social media sites.

•    Extract data from PDFs. This is very difficult, as PDF is a language for printers and does not retain much information on the structure of the data that is displayed within a document. Extracting information from PDFs is beyond the scope of this book, but there are some tools and tutorials that may help you do it.

•    Screen scrape web sites. During screen scraping, you’re extracting structured content from a normal web page with the help of a scraping utility or by writing a small piece of code. While this method is very powerful and can be used in many places, it requires a bit of understanding about how the web works.

With all those great technical options, don’t forget the simple options: often it is worth to spend some time searching for a file with machine-readable data or to call the institution which is holding the data you want.

In this chapter we walk through a very basic example of scraping data from an HTML web page.

What is machine-readable data?

The goal for most of these methods is to get access to machine-readable data. Machine readable data is created for processing by a computer, instead of the presentation to a human user. The structure of such data relates to contained information, and not the way it is displayed eventually. Examples of easily machine-readable formats include CSV, XML, JSON and Excel files, while formats like Word documents, HTML pages and PDF files are more concerned with the visual layout of the information. PDF for example is a language which talks directly to your printer, it’s concerned with position of lines and dots on a page, rather than distinguishable characters.

Scraping web sites: what for?

Everyone has done this: you go to a web site, see an interesting table and try to copy it over to Excel so you can add some numbers up or store it for later. Yet this often does not really work, or the information you want is spread across a large number of web sites. Copying by hand can quickly become very tedious, so it makes sense to use a bit of code to do it.

The advantage of scraping is that you can do it with virtually any web site — from weather forecasts to government spending, even if that site does not have an API for raw data access.

What you can and cannot scrape

There are, of course, limits to what can be scraped. Some factors that make it harder to scrape a site include:

•    Badly formatted HTML code with little or no structural information e.g. older government websites.

•    Authentication systems that are supposed to prevent automatic access e.g. CAPTCHA codes and paywalls.

•    Session-based systems that use browser cookies to keep track of what the user has been doing.

•    A lack of complete item listings and possibilities for wildcard search.

•    Blocking of bulk access by the server administrators.

Another set of limitations are legal barriers: some countries recognize database rights, which may limit your right to re-use information that has been published online. Sometimes, you can choose to ignore the license and do it anyway — depending on your jurisdiction, you may have special rights as a journalist. Scraping freely available Government data should be fine, but you may wish to double check before you publish. Commercial organizations — and certain NGOs — react with less tolerance and may try to claim that you’re “sabotaging” their systems. Other information may infringe the privacy of individuals and thereby violate data privacy laws or professional ethics.

Tools that help you scrape

There are many programs that can be used to extract bulk information from a web site, including browser extensions and some web services. Depending on your browser, tools like Readability (which helps extract text from a page) or DownThemAll (which allows you to download many files at once) will help you automate some tedious tasks, while Chrome’s Scraper extension was explicitly built to extract tables from web sites. Developer extensions like FireBug (for Firefox, the same thing is already included in Chrome, Safari and IE) let you track exactly how a web site is structured and what communications happen between your browser and the server.

ScraperWiki is a web site that allows you to code scrapers in a number of different programming languages, including Python, Ruby and PHP. If you want to get started with scraping without the hassle of setting up a programming environment on your computer, this is the way to go. Other web services, such as Google Spreadsheets and Yahoo! Pipes also allow you to perform some extraction from other web sites.

How does a web scraper work?

Web scrapers are usually small pieces of code written in a programming language such as Python, Ruby or PHP. Choosing the right language is largely a question of which community you have access to: if there is someone in your newsroom or city already working with one of these languages, then it makes sense to adopt the same language.

While some of the click-and-point scraping tools mentioned before may be helpful to get started, the real complexity involved in scraping a web site is in addressing the right pages and the right elements within these pages to extract the desired information. These tasks aren’t about programming, but understanding the structure of the web site and database.

When displaying a web site, your browser will almost always make use of two technologies: HTTP is a way for it to communicate with the server and to request specific resource, such as documents, images or videos. HTML is the language in which web sites are composed.

The anatomy of a web page

Any HTML page is structured as a hierarchy of boxes (which are defined by HTML “tags”). A large box will contain many smaller ones — for example a table that has many smaller divisions: rows and cells. There are many types of tags that perform different functions — some produce boxes, others tables, images or links. Tags can also have additional properties (e.g. they can be unique identifiers) and can belong to groups called ‘classes’, which makes it possible to target and capture individual elements within a document. Selecting the appropriate elements this way and extracting their content is the key to writing a scraper.

Viewing the elements in a web page: everything can be broken up into boxes within boxes.

To scrape web pages, you’ll need to learn a bit about the different types of elements that can be in an HTML document. For example, the <table> element wraps a whole table, which has <tr> (table row) elements for its rows, which in turn contain <td> (table data) for each cell. The most common element type you will encounter is <div>, which can basically mean any block of content. The easiest way to get a feel for these elements is by using the developer toolbar in your browser: they will allow you to hover over any part of a web page and see what the underlying code is.

Tags work like book ends, marking the start and the end of a unit. For example <em> signifies the start of an italicized or emphasized piece of text and </em> signifies the end of that section. Easy.

Figure 57. The International Atomic Energy Agency’s (IAEA) portal (news.iaea.org)

An example: scraping nuclear incidents with Python

NEWS is the International Atomic Energy Agency’s (IAEA) portal on world-wide radiation incidents (and a strong contender for membership in the Weird Title Club!). The web page lists incidents in a simple, blog-like site that can be easily scraped.

To start, create a new Python scraper on ScraperWiki and you will be presented with a text area that is mostly empty, except for some scaffolding code. In another browser window, open the IAEA site and open the developer toolbar in your browser. In the “Elements” view, try to find the HTML element for one of the news item titles. Your browser’s developer toolbar helps you connect elements on the web page with the underlying HTML code.

Investigating this page will reveal that the titles are <h4> elements within a <table>. Each event is a <tr> row, which also contains a description and a date. If we want to extract the titles of all events, we should find a way to select each row in the table sequentially, while fetching all the text within the title elements.

In order to turn this process into code, we need to make ourselves aware of all the steps involved. To get a feeling for the kind of steps required, let’s play a simple game: In your ScraperWiki window, try to write up individual instructions for yourself, for each thing you are going to do while writing this scraper, like steps in a recipe (prefix each line with a hash sign to tell Python that this not real computer code). For example:

# Look for all rows in the table

# Unicorn must not overflow on left side.

Try to be as precise as you can and don’t assume that the program knows anything about the page you’re attempting to scrape.

Once you’ve written down some pseudo-code, let’s compare this to the essential code for our first scraper:

import scraperwiki

In this first section, we’re importing existing functionality from libraries — snippets of pre-written code. scraperwiki will give us the ability to download web sites, while lxml is a tool for the structured analysis of HTML documents. Good news: if you are writing a Python scraper with ScraperWiki, these two lines will always be the same.

doc_text = scraperwiki.scrape(url)

doc = html.fromstring(doc_text)

Next, the code makes a name (variable): url, and assigns the URL of the IAEA page as its value. This tells the scraper that this thing exists and we want to pay attention to it. Note that the URL itself is in quotes as it is not part of the program code but a string, a sequence of characters.

We then use the url variable as input to a function, scraperwiki.scrape. A function will provide some defined job — in this case it’ll download a web page. When it’s finished, it’ll assign its output to another variable, doc_text. doc_text will now hold the actual text of the website — not the visual form you see in your browser, but the source code, including all the tags. Since this form is not very easy to parse, we’ll use another function, html.fromstring, to generate a special representation where we can easily address elements, the so-called document object model (DOM).

In this final step, we use the DOM to find each row in our table and extract the event’s title from its header. Two new concepts are used: the for loop and element selection (.cssselect). The for loop essentially does what its name implies; it will traverse a list of items, assigning each a temporary alias (row in this case) and then run any indented instructions for each item.

The other new concept, element selection, is making use of a special language to find elements in the document. CSS selectors are normally used to add layout information to HTML elements and can be used to precisely pick an element out of a page. In this case (Line. 6) we’re selecting #tblEvents tr which will match each <tr> within the table element with the ID tblEvents (the hash simply signifies ID). Note that this will return a list of <tr> elements.

As can be seen on the next line (Line. 7), where we’re applying another selector to find any <a> (which is a hyperlink) within a <h4> (a title). Here we only want to look at a single element (there’s just one title per row), so we have to pop it off the top of the list returned by our selector with the .pop() function.

Note that some elements in the DOM contain actual text, i.e. text that is not part of any markup language, which we can access using the [element].text syntax seen on line 8. Finally, in line 9, we’re printing that text to the ScraperWiki console. If you hit run in your scraper, the smaller window should now start listing the event’s names from the IAEA web site.

You can now see a basic scraper operating: it downloads the web page, transforms it into the DOM form and then allows you to pick and extract certain content. Given this skeleton, you can try and solve some of the remaining problems using the ScraperWiki and Python documentation:

•    Can you find the address for the link in each event’s title?

•    Can you select the small box that contains the date and place by using its CSS class name and extract the element’s text?

•    ScraperWiki offers a small database to each scraper so you can store the results; copy the relevant example from their docs and adapt it so it will save the event titles, links and dates.

•    The event list has many pages; can you scrape multiple pages to get historic events as well?

As you’re trying to solve these challenges, have a look around ScraperWiki: there are many useful examples in the existing scrapers — and quite often, the data is pretty exciting, too. This way, you don’t need to start off your scraper from scratch: just choose one that is similar, fork it and adapt to your problem.

Source: http://datajournalismhandbook.org/1.0/en/getting_data_3.html

Thursday, 28 May 2015

Web Scraping Services - A trending technique in data science!!!

Web scraping as a market segment is trending to be an emerging technique in data science to become an integral part of many businesses – sometimes whole companies are formed based on web scraping. Web scraping and extraction of relevant data gives businesses an insight into market trends, competition, potential customers, business performance etc.  Now question is that “what is actually web scraping and where is it used???” Let us explore web scraping, web data extraction, web mining/data mining or screen scraping in details.

What is Web Scraping?

Web Data Scraping is a great technique of extracting unstructured data from the websites and transforming that data into structured data that can be stored and analyzed in a database. Web Scraping is also known as web data extraction, web data scraping, web harvesting or screen scraping.

What you can see on the web that can be extracted. Extracting targeted information from websites assists you to take effective decisions in your business.

Web scraping is a form of data mining. The overall goal of the web scraping process is to extract information from a websites and transform it into an understandable structure like spreadsheets, database or csv. Data like item pricing, stock pricing, different reports, market pricing, product details, business leads can be gathered via web scraping efforts.

There are countless uses and potential scenarios, either business oriented or non-profit. Public institutions, companies and organizations, entrepreneurs, professionals etc. generate an enormous amount of information/data every day.

Uses of Web Scraping:

The following are some of the uses of web scraping:

•    Collect data from real estate listing

•    Collecting retailer sites data on daily basis

•    Extracting offers and discounts from a website.

•    Scraping job posting.

•    Price monitoring with competitors.

•    Gathering leads from online business directories – directory scraping

•    Keywords research

•    Gathering targeted emails for email marketing – email scraping

•    And many more.

There are various techniques used for data gathering as listed below:

•    Human copy-and-paste – takes lot of time to finish when data is huge

•    Programming the Custom Web Scraper as per the needs.

•    Using Web Scraping Softwares available in market.

Are you in search of web data scraping expert or specialist. Then you are at right place. We are the team of web scraping experts who could easily extract data from website and further structure the unstructured useful data to uncover patterns, and help businesses for decision making that helps in increasing sales, cover a wide customer base and ultimately it leads to business towards growth and success.

We have got expertise in all the web scraping techniques, scraping data from ajax enabled complex websites, bypassing CAPTCHAs, forming anonymous http request etc in providing web scraping services.

The web scraping is legal since the data is publicly and freely available on the Web. Smart WebTech can probably help you to achieve your scraping-based project goals. We would be more than happy to hear from you.

Source: http://webdata-scraping.com/web-scraping-trending-technique-in-data-science/

Tuesday, 26 May 2015

Endorsing web scraping

With more than 200 projects delivered, we stand firmly for new challenges every day. We have served above 60 clients and have won 86% of repeat business, as our main core is customer delight. Successive Softwares was approached by a client having a very exclusive set of requirements. For their project they required customised data mining, in real time to offer profitable information to their customers. Requirement stated scrapping of stock exchange data in real time so that end users can be eased in their marketing decisions. This posed as an ambitious task for us because it required processing of huge amount of data on a routine basis. We welcomed it as an event to evolve and do something aside of classic web application development.

We started with mock-ups, pursuing our very first step of IMPART Framework (Innovative Mock-up based Prototypes Analyzed to develop Reengineered Technology). Our team of experts thought of all the potential requirements with a flow and materialized it flawlessly into our mock up. It was a strenuous tasks but our excitement to do something which others still do not think of, filled our team with confidence and energy and things began to roll out perfectly. We presented our mock-up and statistics to the client as per our expectation client choose us, impressed with the efforts.

We started gathering requirements from client side and started to formulate design about the flow. The project required real time monitoring of stock exchange together with Prices, Market Turnover and then implement them into graphs. The front end part was an easy deal, we were already adept in playing with data the way required. The intractable task was to get the data. We researched and found that it can be achieved either with API or with Web Scarping and we moved with latter because of the limitations in API.

Web scraping is a compelling technique to get the required information straight out of the web page. Lack of documentation and not much forbearance forced us to make a slow start, but we kept all the requirements clear and new that we headed in the right direction.  We divided the scraping process into bits of different but related tasks. Firstly we needed to find the data which has to be captured, some of the problems faced were pagination and use of AJAX but with examination of endpoints in URL and the requests made when data is drawn, we surmounted these problems easily.

After targeting our data we focused on HTML parser which could extract data form all the targets. Using PHP we developed a parser extracting all the information and saving them in Database in a structured way.  After the required data present at our end we easily manipulated it into tables and charts and we used HIGHSTOCK for that. Entire Client side was developed in PHP with Zend frame work and we used MySQL 5.7 for server side.

During the whole development cycle our QA team insured we were delivering a quality product following all standards. We kept our client in the loop during the whole process keeping them informed about every step. Clients were also assured as they watched their project starting from scratch which developed into full fledge website. The process followed a strict time line releasing regular builds and implementing new improvements. We stood up to the expectation our client and delivered a product just as they visualized it to be.

Source: http://www.successivesoftwares.com/endorsing-web-scraping/

Monday, 25 May 2015

What you need to know about web scraping: How to understand, identify, and sometimes stop

NB: This is a gust article by Rami Essaid, co-founder and CEO of Distil Networks.

Here’s the thing about web scraping in the travel industry: everyone knows it exists but few know the details.

Details like how does web scraping happen and how will I know? Is web scraping just part of doing business online, or can it be stopped? And lastly, if web scraping can be stopped, should it always be stopped?

These questions and the challenge of web scraping are relevant to every player in the travel industry. Travel suppliers, OTAs and meta search sites are all being scraped. We have the data to prove it; over 30% of travel industry website visitors are web scrapers.

Google Analytics, and most other analytics tools do not automatically remove web scraper traffic, also called “bot” traffic, from your reports – so how would you know this non-human and potentially harmful traffic exists? You have to look for it.

This is a good time to note that I am CEO of a bot-blocking company called Distil Networks, and we serve the travel industry as well as digital publishers and eCommerce sites to protect against web scraping and data theft – we’re on a mission to make the web more secure.

So I am admittedly biased, but will do my best to provide an educational account of what we’ve learned to be true about web scraping in travel – and why this is an issue every travel company should at the very least be knowledgeable about.

Overall, I see an alarming lack of awareness around the prevalence of web scraping and bots in travel, and I see confusion around what to do about it. As we talk this through I’ll explain what these “bots” are, how to find them and how to manage them to better protect and leverage your travel business.

What are bots, web scrapers and site indexers? Which are good and which are bad?

The jargon around web scraping is confusing – bots, web scrapers, data extractors, price scrapers, site indexers and more – what’s the difference? Allow me to quickly clarify.

–> Bots: This is a general term that refers to non-human traffic, or robot traffic that is computer generated. Bots are essentially a line of code or a program that is created to perform specific tasks on a large scale.  Bots can include web scrapers, site indexers and fraud bots. Bots can be good or bad.

–> Web Scraper: (web harvesting or web data extraction) is a computer software technique of extracting information from websites (source, Wikipedia). Web scrapers are usually bad.

If your travel website is being scraped, it is most likely your competitors are collecting competitive intelligence on your prices. Some companies are even built to scrape and report on competitive price as a service. This is difficult to prove, but based on a recent Distil Networks study, prices seem to be main target.You can see more details of the study and infographic here.

One case study is Ryanair. They have been particularly unhappy about web scraping and won a lawsuit against a German company in 2008, incorporated Captcha in 2011 to stop new scrapers, and when Captcha wasn’t totally effective and Cheaptickets was still scraping, they took to the courts once again.

So Ryanair is doing what seems to be a consistent job of fending off web scrapers – at least after the scraping is performed. Unfortunately, the amount of time and energy that goes into identifying and stopping web scraping after the fact is very high, and usually this means the damage has been done.

This type of web scraping is bad because:

    Your competition is likely collecting your price data for competitive intelligence.

    Other travel companies are collecting your flights for resale without your consent.

    Identifying this type of web scraping requires a lot of time and energy, and stopping them generally requires a lot more.

Web scrapers are sometimes good

Sometimes a web scraper is a potential partner in disguise.

Meta search sites like Hipmunk sometimes get their start by scraping travel site data. Once they have enough data and enough traffic to be valuable they go to suppliers and OTAs with a partnership agreement. I’m naming Hipmunk because the Company is one of th+e few to fess up to site scraping, and one of the few who claim to have quickly stopped scraping when asked.

I’d wager that Hipmunk and others use(d) web scraping because it’s easy, and getting a decision maker at a major travel supplier on the phone is not easy, and finding legitimate channels to acquire supplier data is most definitely not easy.

I’m not saying you should allow this type of site scraping – you shouldn’t. But you should acknowledge the opportunity and create a proper channel for data sharing. And when you send your cease and desist notices to tell scrapers to stop their dirty work, also consider including a note for potential partners and indicate proper channels to request data access.

–> Site Indexer: Good.

Google, Bing and other search sites send site indexer bots all over the web to scour and prioritize content. You want to ensure your strategy includes site indexer access. Bing has long indexed travel suppliers and provided inventory links directly in search results, and recently Google has followed suit.

–> Fraud Bot: Always bad.

Fraud bots look for vulnerabilities and take advantage of your systems; these are the pesky and expensive hackers that game websites by falsely filling in forms, clicking ads, and looking for other vulnerabilities on your site. Reviews sections are a common attack vector for these types of bots.

How to identify and block bad bots and web scrapers

Now that you know the difference between good and bad web scrapers and bots, how do you identify them and how do you stop the bad ones? The first thing to do is incorporate bot-identification into your website security program. There are a number of ways to do this.

In-house

When building an in house solution, it is important to understand that fighting off bots is an arms race. Every day web scraping technology evolves and new bots are written. To have an effective solution, you need a dynamic strategy that is always adapting.

When considering in-house solutions, here are a few common tactics:

    CAPTCHAs – Completely Automated Public Turing Tests to Tell Computers and Humans Apart (CAPTCHA), exist to ensure that user input has not been generated by a computer. This has been the most common method deployed because it is simple to integrate and can be effective, at least at first. The problem is that Captcha’s can be beaten with a little workand more importantly, they are a nuisance to end usersthat can lead to a loss of business.

    Rate Limiting- Advanced scraping utilities are very adept at mimicking normal browsing behavior but most hastily written scripts are not. Bots will follow links and make web requests at a much more frequent, and consistent, rate than normal human users. Limiting IP’s that make several requests per second would be able to catch basic bot behavior.

    IP Blacklists - Subscribing to lists of known botnets & anonymous proxies and uploading them to your firewall access control list will give you a baseline of protection. A good number of scrapers employ botnets and Tor nodes to hide their true location and identity. Always maintain an active blacklist that contains the IP addresses of known scrapers and botnets as well as Tor nodes.

    Add-on Modules – Many companies already own hardware that offers some layer of security. Now, many of those hardware providers are also offering additional modules to try and combat bot attacks. As many companies move more of their services off premise, leveraging cloud hosting and CDN providers, the market share for this type of solution is shrinking.

    It is also important to note that these types of solutions are a good baseline but should not be expected to stop all bots. After all, this is not the core competency of the hardware you are buying, but a mere plugin.

Some example providers are:

    Impreva SecureSphere- Imperva offers Web Application Firewalls, or WAF’s. This is an appliance that applies a set of rules to an HTTP connection. Generally, these rules cover common attacks such as Cross-site Scripting (XSS) and SQL Injection. By customizing the rules to your application, many attacks can be identified and blocked. The effort to perform this customization can be significant and needs to be maintained as the application is modified.

    F5 – ASM – F5 offers many modules on their BigIP load balancers, one of which is the ASM. This module adds WAF functionality directly into the load balancer. Additionally, F5 has added policy-based web application security protection.

Software-as-a-service

There are website security software options that include, and sometimes specialize in web scraping protection. This type of solution, from my perspective, is the most effective path.

The SaaS model allows someone else to manage the problem for you and respond with more efficiency even as new threats evolve.  Again, I’m admittedly biased as I co-founded Distil Networks.

When shopping for a SaaS solution to protect against web scraping, you should consider some of the following factors:

•    Does the provider update new threats and rules in real time?

•    How does the solution block suspected non-human visitors?

•    Which types of proactive blocking techniques, such as code injections, does the provider deploy?

•    Which of the reactive techniques, such as rate limiting, are used?

•    Does the solution look at all of your traffic or a snapshot?

•    Can the solution block bots before they reach your infrastructure – and your data?

•    What kind of latency does this solution introduce?

I hope you now have a clearer understanding of web scraping and why it has become so prevalent in travel, and even more important, what you should do to protect and leverage these occurrences.

Source: http://www.tnooz.com/article/what-you-need-to-know-about-web-scraping-how-to-understand-identify-and-sometimes-stop/

Friday, 22 May 2015

Roles of Data Mining in Predicting, Tracking, and Containing the Ebola Outbreak

One of the most diverse continents on earth, Africa astounds the world with its vast savannas and great deserts and with its ancient architecture and modern cities, but Africa also has its share of tragedies and woes.

First identified in Democratic Republic of Congo’s Ebola River in 1976, Ebola Hemorrhagic Fever, a deadly zoonotic disease caused by Ebola virus, has been spreading in West Africa like a wildfire, engulfing everything on its way and creating widespread panic.

What has added insult to injury is the fact that the region has long endured the severe consequences of civil wars and social conflicts, and diseases like malaria, HIV/AIDS, yellow fever, cholera etc. have remained endemic to the region for a long time, causing tens of thousands of deaths every year.

Reportedly, Ebola has already killed at least 2,296 people, and there are about 3,685 confirmed cases of infection. Mortality rate has been swinging between 50% to 90%, depending on the quality of care and nutrition. According to WHO, the disease is likely to infect as much as 20,000 people before it is finally brought under control.

Crisis of Data

When it comes to healthcare management, clinical data is one of the key components. The value of data becomes more urgent in the emergency situation like that of West Africa. The more relevant data you have, the bigger picture you can create for taking aggressive measures. To use Peter Drucker’s words, “What gets measured gets managed.”

Factual data is a precondition for the doctors and health science experts working in the field for measuring and managing the situation. Data helps them to assess their successes or failures and reorient their actions. One of the important reasons why the fight against the Ebola outbreak is turning out into a losing battle is the insufficiency of data. Recently, Scientific American magazine wrote:

Right now, there are not even enough beds for sick patients nor enough data coming in to help track cases. Surveillance and tracking of those who were possibly exposed to Ebola remain inadequate.

In Science magazine, Gretchen Vogel suggests that the death toll of Ebola patients could be much higher than it is currently estimated. She says, “Exactly how many unrecorded Ebola deaths have occurred will never be known. Health officials are keeping track of suspected and probable cases, many of which are people who died before they could be tested.” Greg Slabodkin voices similar concerns in Health Data Management and points at the need of an integrated global biosurveillance system.

The absence of reliable and actionable data has badly hampered the efforts of combatting Ebola and providing proper medical care to the victims. CDC Director Dr. Tom Frieden describes it as a “fog-of-war situation”.

Data Mining: Bots Were the First to Warn

When you flip the coin, however, the situation is not completely bleak and desperate. Even if Big Data technologies have fallen short in predicting, tracking, and containing the epidemic, mainly due to the lack of data from the ground, it has not entirely failed. Data scientists and healthcare experts world over are making concerted efforts to know, track, and defeat the Ebola virus—some on the ground and some in their labs.

The increasing level of collaboration among the biomedical specialists, geneticist, virologists, and IT experts has definitely contributed to slow down the transmission of the virulent disease dubbed as “the plague of modern day”. Médecins Sans Frontières and Healthmap.org are the excellent examples in this regard.

    “By deploying bots and crawlers and by using advanced machine learning algorithms, the Boston-based global infectious disease surveillance system, HealthMap was able to predict and raise concerns about the spread of a mysterious hemorrhagic fever in West Africa nine days earlier than WHO did.”

Run by a team of 45 researchers, epidemiologists, and software developers at Boston Children’s Hospital, HealthMap mines data from search engine queries, social media platforms, health information sites, news reports and crowd-sourced information to track the transmission of the disease and provides an up-to-date timeline report with an interactive map, making it easier for the international health agencies to devise more effective action plans.

HealthMap serves as a good example of how crucial Big Data and data mining technologies could be for handling a healthcare emergency with fact-based and data-driven decisions.

Ebola Data

In their letter to The Lancet, research scientist Rashid Ansumana and his colleagues, working on Ebola in Sierra Leone, highlighted on the need of developing epidemic surveillance systems “by adopting new data-sharing technologies.” They wrote, “Emerging technologies can help early warning systems, outbreak response, and communication between health-care providers, wildlife and veterinary professionals, local and national health authorities, and international health agencies.”

Data-Driven Initiatives to Control the Outbreak

The era of systematic use of data for making better epidemiological predictions and for finding effective healthcare solutions began with Google Flue Trends in 2007, and the rapidly developing tools, technologies, and practices in Big Data have increased the roles of data in healthcare management.

There are a number of data-driven undertakings in progress which have contributed to counter the raging spread of Ebola. Brockmann Lab, run by Professor Dirk Brockmann and his colleagues, for example, has created a computer model for studying correlations and probabilities in the explosion of new cases of infection.

World Airtraffic  Transportation and Relative Import Risk, Source: Brockmann Lab

By applying computational and statistical models, they predict which areas, cities or regions in the world are at the risk of becoming the next Ebola epidemic hotspots. Similarly, Alessandro Vespignani–a network scientist, statistical physicist, and Northeastern professor–has been using human mobility network data to track the cases of Ebola infection and dissemination.

The Swedish NGO Flowminder Foundation has been aggregating, mining, and analyzing anonymized mobile phone location data and is developing national mobility estimates for West Africa to help the local and international agencies to combat the disease.

Meanwhile, innovations with Epi Info VHF, a software tool for case management, contact tracing, analysis and reporting services for Ebola and other hemorrhagic fever outbreaks and OpenStreetMap project for getting location information and spatial data of the affected areas have further helped to guide the intervention initiatives.

However, with all optimism about the growing roles of Big Data and data mining, we also need to be mindful about their limitations. Newsweek aptly puts: “While no media-trawling bot could ever replace national and international health agencies, such tools may be starting to help fill in some of the most gaping holes in real-time knowledge.”

Source: http://www.grepsr.com/blog/data-mining-tracking-ebola-outbreak/

Wednesday, 20 May 2015

Hard-Scraped Hardwood Flooring: Restoration of History

Throughout History hardwood flooring has undergone dramatic changes from the meticulous hard-scraped hardwood polished floors of majestic plantations of the Deep South, to modern day technology providing maintenance free wood flooring designed for comfort and appearance. The hand-scraped hardwood floors of the South, depicted charm with old rustic nature and character that was often associated with this time era. To date, hand-scraped hardwood flooring is being revitalized and used in up-scale homes and places of businesses to restore the old country charm that once faded into oblivion.

As the name implies, hand-scraped flooring involves the retexturing the top layer of flooring material by various methods in an attempts to mimic the rustic appearance of flooring in yesteryears. Depending on the degree of texture required, hand scraping hardwood material is often accomplished by highly skilled craftsmen with specialized tools and years of experience perfecting this procedure. When properly done, hand-scraped hardwood floors add texture, richness and uniqueness not offered in any similar hardwood flooring product.

Rooted with history, these types of floors are available in finished or unfinished surfaces. The majority of the individuals selecting hand-scraped hardwood flooring elect a prefinished floor to reduce costs per square foot in installation and finishing labor charges, allowing for budget guidelines to bend, not break. As expected, hand-scraped flooring is expensive and depending on the grade and finish selected, can range from $15-40$ per square foot and beyond for material only. Preparation of the material is labor intensive adding to the overall cost per square foot dramatically. Recommended professional installation can and often does increase the cost per square foot as well, placing this method of hardwood flooring well out of reach of the average hardwood floor purchaser.

With numerous selections of hand-scraped finishes available, each finish is designed to bring out a different appearance making it a one-of-a-kind work of art. These numerous finish selections include:

• Time worn aged, dark coloring stain application bringing out grain characteristics

• Wire brushed, providing a highlighted "grainy" effect with obvious rough texture

• Hand sculpted, smoother distressed uniform appearance

• French Bleed, staining of edges and side joints with a much darker stain to give a bleeding effect to the wood

• Hand Hewn or Rough Sawn, with visible and noticeable saw marks

Regardless of the selection made, scraped flooring cannot be compared to any other available flooring material based on durability, strength and visual appearance. Limited by only the imagination and creativity, several wood species can be used to create unusual floor patterns, highlighting main focal points of personal libraries and art collections.

The precise process utilized in the creation of scraped floors projects a custom look with deep color and subtle warm highlights. With radiant natural light reflecting off this type of floor, the effect of beauty and depth is radiated in a fashion that fills the room with solitude and serenity encompassing all that enter. Hand-scraped hardwood floors speak of the past, a time of decent, a time or war and ambiguity towards other races and the blood- shed so that all men could be treated as equals. More than exquisite flooring, hand-scraped hardwood flooring is the restoration of History.

Source: http://ezinearticles.com/?Hard-Scraped-Hardwood-Flooring:-Restoration-of-History&id=6333218

Sunday, 17 May 2015

Introducing ScrapeShield: Discover, Defend & Deter Content Scraping

If you're a publisher, whether an individual blogger or major media outlet, you've undoubtedly experienced content scraping. Searching the web for an article you've published or other original content you've created and you find it copied and republished on some other random website. Often the site will be full of ads. And, sometimes, it will even rank higher in search results than your original work.

While you may envision an army of individuals copying and pasting your content on their sites, the truth is content scraping is typically an automated process with bots that grab original content and then republish it without human intervention onto link farm sites. CloudFlare has blocked many of these bots automatically in the past, but we decided it was time to do something to more actively stop them.

Introducing ScrapeShield

ScrapeShield is an app created by the CloudFlare team. It incorporates several existing CloudFlare features like email obfuscation and hotlink protection that serve to protect from content scraping and adds a number of new features as well. Because we believe every publisher of original content should be able to understand and control how their work is used, we're providing ScrapeShield free for every CloudFlare user.

Detect, Defend & Deter

ScrapeShield has different elements to help you detect when your content is scraped, defend your site against content scrapers, and even deter content scrapers from targeting you in the first place. If you enable ScrapeShield, CloudFlare will automatically insert invisible tracking beacons in your content. When automated bots scrape your content, they pull the beacons along with them. CloudFlare detects these beacons when they ping from sites that aren't your own. You can access your ScrapeShield control panel to see where your content is being republished. Not only is this useful in showing scraping, but you can also see users who are reading your content through proxy services like Flipboard or Pulse.

The data from the content beacons is fed back into CloudFlare's protection system. As CloudFlare identifies content scraping bots, we automatically prevent them from accessing your site. Just like Project Honey Pot, the original inspiration for CloudFlare, used traps to detect when spammers were harvesting email addresses, CloudFlare now uses data from ScrapeShield to identify content scrapers and keep them off publishers' sites.

Maze

We didn't want to just stop scrapers from attacking sites on CloudFlare, we also wanted to tie up their resources so they couldn't harm the rest of the web. To do this, we created Maze. Maze routes known content scrapers who are visiting ScrapeShield-protected sites into a virtual labyrinth of gibirish and gobbledygook. We dynamically throttle the bandwidth and speed so instead of the pages loading as fast as possible, the connection is held open to the scrapers and their resources are tied up.

We use excess resources on the CloudFlare network to generate Maze, and it doesn't consume any of our publishers' resources or add any additional load to their sites. What's beautiful about the system is that the only way that content scrapers can be sure they're avoiding Maze is to avoid CloudFlare's IP addresses entirely. For any content scrapers who may be reading this, here's a helpful list of all of our IPs so you can make sure to stay away.

No Pinning

Finally, with the rise of sites like Pinterest, innocent content scraping may become even more prolific. While many sites welcome their images being pinned, we wanted to make it easy to opt out. ScrapeShield includes an option to add the no-pinning meta tag to your site to prevent your images from being pinned to the site. As other similar services include a mechanism to opt out, expect that we'll include an easy way for you to do so right from the ScrapeShield interface.

The health of the web depends on publishers creating original content getting credit for their creations. Cloud Flare is committed to building a better web and we're extremely excited about ScrapeShield as a new tool to help publishers do exactly that.

Source: https://blog.cloudflare.com/introducing-scrapeshield-discover-defend-dete/

Wednesday, 6 May 2015

Kimono Is A Smarter Web Scraper That Lets You “API-ify” The Web, No Code Required

A new Y Combinator-backed startup called Kimono wants to make it easier to access data from the unstructured web with a point-and-click tool that can extract information from webpages that don’t have an API available. And for non-developers, Kimono plans to eventually allow anyone track data without needing to understand APIs at all.

This sort of smarter “web scraper” idea has been tried before, and has always struggled to find more than a niche audience. Previous attempts with similar services like Dapper or Needlebase, for example, folded. Yahoo Pipes still chugs along, but it’s fair to say that the service has long since been a priority for its parent company.

But Kimono’s founders believe that the issue at hand is largely timing.

“Companies more and more are realizing there’s a lot of value in opening up some of their data sets via APIs to allow developers to build these ecosystems of interesting apps and visualizations that people will share and drive up awareness of the company,” says Kimono co-founder Pratap Ranade. (He also delves into this subject deeper in a Forbes piece here). But often, companies don’t know how to begin in terms of what data to open up, or how. Kimono could inform them.

Plus, adds Ranade, Kimono is materially different from earlier efforts like Dapper or Needlebase, because it’s outputting to APIs and is starting off by focusing on the developer user base, with an expansion to non-technical users planned for the future. (Meanwhile, older competitors were often the other way around).

The company itself is only a month old, and was built by former Columbia grad school companions Ranade and Ryan Rowe. Both left grad school to work elsewhere, with Rowe off to Frog Design and Ranade at McKinsey. But over the nearly half-dozen or so years they continued their careers paths separately, the two stayed in touch and worked on various small projects together.

One of those was Airpapa.com, a website that told you which movies were showing on your flights. This ended up giving them the idea for Kimono, as it turned out. To get the data they needed for the site, they had to scrape data from several publicly available websites.

“The whole process of cleaning that [data] up, extracting it on a schedule…it was kind of a painful process,” explains Rowe. “We spent most of our time doing that, and very little time building the website itself,” he says. At the same time, while Rowe was at Frog, he realized that the company had a lot of non-technical designers who needed access to data to make interesting design decisions, but who weren’t equipped to go out and get the data for themselves.

With Kimono, the end goal is to simplify data extraction so that anyone can manage it. After signing up, you install a bookmarklet in your browser, which, when clicked, puts the website into a special state that allows you to point to the items you want to track. For example, if you were trying to track movie times, you might click on the movie titles and showtimes. Then Kimono’s learning algorithm will build a data model involving the items you’ve selected.

That data can be tracked in real time and extracted in a variety of ways, including to Excel as a .CSV file, to RSS in the form of email alerts, or for developers as a RESTful API that returns JSON. Kimono also offers “Kimonoblocks,” which lets you drop the data as an embed on a webpage, and it offers a simple mobile app builder, which lets you turn the data into a mobile web application.

For developer users, the company is currently working on an API editor, which would allow you to combine multiple APIs into one.

So far, the team says, they’ve been “very pleasantly surprised” by the number of sign-ups, which have reached ten thousand*. And even though only a month old, they’ve seen active users in the thousands.

Initially, they’ve found traction with hardware hackers who have done fun things like making an airhorn blow every time someone funds their Kickstarter campaign, for instance, as well as with those who have used Kimono for visualization purposes, or monitoring the exchange rates of various cryptocurrencies like Bitcoin and dogecoin. Others still are monitoring data that’s later spit back out as a Twitter bot.

Kimono APIs are now making over 100,000 calls every week, and usage is growing by over 50 percent per week. The company also put out an unofficial “Sochi Olympics API” to showcase what the platform can do.

The current business model is freemium based, with pricing that kicks in for higher-frequency usage at scale.

The Mountain View-based company is a team of just the two founders for now, and has initial investment from YC, YC VC and SV Angel.

Source: http://techcrunch.com/2014/02/18/kimono-is-a-smarter-web-scraper-that-lets-you-api-ify-the-web-no-code-required/

Thursday, 30 April 2015

Web Data Scraping - Scrape Business Data in no time

The Internet has evolved as one of the largest repositories of information for your business. You can design intelligent business processes to access a whole host of relevant information sources that will help you strategize, implement and deliver effective business objectives. Leveraging the benefits and usefulness of Web Scraping Tools is one such methodology that most businesses have adopted. Let us take a look at some of the ways it helps you easily scrape data relevant for your business.

Scraping for Business Information

Web Data Scraping is a technique, employed by most organizations. It involves the implementation of tools that help businesses extract unstructured data and convert them into usable business information. The focus of most scraping initiatives revolves around the organization’s need to glean the following information:

•    Competitor analysis to structure and strategist effectively

•    Price comparisons to price their products competitively

•    Customer feedbacks to enhance their product portfolio and provide customers with better brand experience   Market dynamics to help them identify areas of opportunities and threats

Using Scraping Tools

The abundance of information available on the Internet that helps you build up a productive business strategy can be easily extracted and leveraged to benefit your business. Tools have been designed with intuitive interface and intelligent algorithms which help in furthering this end.

Website Data Scraping tools are equipped for compatibility with a wide variety of applications so as to be able to explore a huge range of information sources.  These tools are fully automated and display the drag and drop facility ensuring users get to leverage the benefits of speed and convenience.

Data extraction tools are not only adept at extracting data, but are also equally well-equipped to combine relevant statistics from several social media platforms like YouTube, Twitter, and Google Analytics and so on. This helps businesses to analyse trends and plan strategies accordingly.

Challenges of the Data Scraping Process

Just as there is no dearth of data to be collected from the Web, there is also an abundance of web scraping tools to execute the data collection process. However, the capability of the tool to help you collect the appropriate data needs to be assured before you can proceed with its implementation. Some of the challenges faced by most businesses owing to their wrong choice of tools include the following:

•    Run-of-the-mill extraction tools are unable to scale up sufficiently in order to capture large volumes of data

•    Some tools are also unable to establish compatibility with most data sources and therefore do not provide a holistic data collection approach

•    Some tools are also not equipped to conduct an automatic detection of updates made to a data source and therefore end up providing inaccurate data.

In the light of all this it is essential that you identify the right tool for your need and select one that is embedded with an updated technology to help you achieve the following:

•    Ensure that you are able to access the appropriate data that you want

•    Help you structure it in the format you want

•    Provide quick and easy access to all available data sources no matter how complex

•    Run accurately and is a reliable source to help you churn out usable information.

Source: http://scraping-solutions.blogspot.in/2014_07_01_archive.html

Tuesday, 28 April 2015

Web Scraping – Effective Way of Improving Market Presence

Web scraping is a technique that is fast making its presence felt in the world of internet by its sheer weight of being effective. It is a technique that uses software to crawl through the internet and gather up all the relevant and important information that one would need for their products.

The information gathered by the web scraping can be used for various things such as data integration, web mashup, online comparison of price and much more. Web scraping uses sophisticated software that crawls through the internet and gathers up all related information for the entity that you are looking for. The information that is gathered up is an automated, systematic, and very structured way. This allows for easy understanding of the gathered information. Though this is one of the best ways for data extraction there are quite a few things that one must be aware of before getting into web scraping.

Being aware of the following things keep you at a better position not only leverage the best deal, but also to negotiate properly.

•    For data mining the first thing that one should be very sure of is the kind of data they want. One has to define properly what kind of data they want and also what would be the purpose of the same. For an instance if you wish to get a closer look at your competitors, it would be a wise to let the data scraping service providers know who your competitors are. This would allow them to gather better information. Similarly if you are looking for getting new customers getting contact data from existing players in the respective industry would be helpful.

•    One should also be aware of the structure in which they want the data. A simple data structure has the entity name in the row and the property of the entity is kept in the cells of the rows. However, one can also opt for data structure in chart. Apart from the above, there is just one more thing that one needs to keep in mind while using the data mining services; it is the number of data extraction. At times a onetime data extraction would be sufficient whereas at other times periodic extractions or general reports are required.

If you are aware of all the above points, then you are very much inline of going ahead and taking the help of scrape website data. Knowing the above points would allow you to know what exactly to ask from your vendor and likewise quote. One can make the most of the data extraction services with the help of either the web scraping or web crawling services.

Source: https://3idatascraping.wordpress.com/2014/01/07/web-scraping-effective-way-of-improving-market-presence/

Saturday, 25 April 2015

Scraping the Bottom of the Barrel - The Perils of Online Article Marketing

Many online article marketers so desperately wish to succeed, they want to dump corporate life and work for themselves out of their home. They decide they are going to create an online money making website. Therefore, they look around to see what everyone else is doing, and watch the methods others use to attract online buyers, and then they mimic their marketing, their strategies, and their business models.

Still, if you are copying what other people (less ethical people) are doing in online article marketing, those which are scraping the bottom of the barrel and using false advertising and misrepresentations, then all you are really doing is perpetuating distrust on the Internet. Therefore, you are hurting everyone, including people like me. You must realize that people like me don't appreciate that.

Let me give you a few examples of some of the things going on out there, thing that are being done by people who are ethically challenged. Far too many people write articles and then on their byline they send the Internet surfer or reader of the article to a website that has a squeeze page. The squeeze page has no real information on it, rather it asks for their name and e-mail address.

If the would-be Internet surfer is unwise enough to type in their name and email address they will be spammed by e-mail, receiving various hard-sell marketing pieces. Then, if the Internet Surfer does decide to put in their e-mail address, the website grants them access and then takes them to the page with information about what they are selling, or their online marketing "make you a millionaire" scheme.

Generally, these are five page sales letters, with tons of testimonials of people you've never heard of, and may not actually exist, and all sorts of unsubstantiated earnings claims of how much money you will make if you give them $39.35 by way of PayPal, for this limited offer "Now!" And they will send you an E-book with a strategic plan of how you can duplicate what they are doing. The reality is whatever they are doing is questionable to begin with.

If you are going to do online article marketing please don't scrape the bottom of the barrel, there's just too much competition down there from what I can see. Please consider all this.

Source: http://ezinearticles.com/?Scraping-the-Bottom-of-the-Barrel---The-Perils-of-Online-Article-Marketing&id=2710103

Wednesday, 22 April 2015

Hand Scraped Versus Machine Scraped Floors - The Distinction

In society today hardwood flooring has become the new must have. The days of carpet are gone, and if you have looked into bringing your home up to date with the styling of today you will have noticed by now that there are many different options. At times this may become very overwhelming, especially if you are not a hardwood specialist like most people are not. That is why this article is here to help you understand the many different options available to you.

The flooring type covered in this article is hand scraped flooring. This flooring type is a custom look flooring that is in very high demand in flooring marketplace, which is understandable because it is probably the most unique flooring there is. You can choose from many different types of wood species such as oak, maple, hickory, and most exotic species. There is computerized hand scraped that is when the manufacturer makes one piece of wood and places it into a computer that will cut thousands of different wood types with that one design. This type of process is also known as machine scraping. Hardwood floors employing this type of technology usually cost less, but most of the pieces look the same because the hand scraping is done by a machine.

Then you have actual hand scraped flooring that is done all by hand and takes more time and effort than machine scraped. This flooring is made custom each individual piece is scraped and notched in different ways, so every piece is unique. If you decide to purchase actual hand scraped flooring it will cost you more than mass produced computerized version but it will definitely be the more unique option. If you are the type of person who wants to have a one of kind floor then an actual hand scraped floor is the way to go.

So in conclusion hand scraped flooring is a great option for a lot of people. It comes in several different wood types, and several different colors. You can find flooring options for every budget and to meet every style. If having a custom floor in your home it may be important or not important on whether it be computer or done by hand. Most consumers cannot tell the difference between actual hand scraped flooring and machine scraped when just looking at a small sample. So when shopping at your local retailer ask the tough questions and find out if the manufacturer uses machine or authentic hand scrapping on their products.

To view your many options on hand scraped flooring please check out our website that covers all hardwood flooring options.

Source: http://ezinearticles.com/?Hand-Scraped-Versus-Machine-Scraped-Floors---The-Distinction&id=4151157

Friday, 17 April 2015

Some Traps to know and avoid in Web Scraping

In the present day and age, web scraping comes across as a handy tool in the right hands. In essence, web scraping means quickly crawling the web for specific information, using pre-written programs. Scraping efforts are designed to crawl and analyze the data of entire websites, and saving the parts that are needed. Many industries have successfully used web scraping to create massive banks of relevant, actionable data that they use on a daily basis to further their business interests and provide better service to customers. This is the age of the Big Data, and web scraping is one of the ways in which businesses can tap into this huge data repository and come up with relevant information that aids them in every way.

Web scraping, however, does come with its own share of problems and roadblocks. With every passing day, a growing number of websites are trying to actively minimize the instance of scraping and protect their own data to stay afloat in today’s situation of immense competition. There are several other complications which might arise and several traps that can slow you down during your web scraping pursuits. Knowing about these traps and how to avoid them can be of great help if you want to successfully accomplish your web scraping goals and get the amount of data that you require.

Complications in Web Scraping

Over time, various complications have risen in the field of web scraping. Many websites have started to get paranoid about data duplication and data security problems and have begun to protect their data in many ways. Some websites are not generally agreeable to the moral and ethical implications of web scraping, and do not want their content to be scraped. There are many places where website owners can set traps and roadblocks to slow down or stop web scraping activities. Major search engines also have a system in place to discourage scraping of search engine results. Last but not the least, many websites and web services announce a blanket ban on web scraping and say the same in their terms and conditions, potentially leading to legal issues in the event of any scraping.

Here are some of the most common complications that you might face during your web scraping efforts which you should be particularly aware about –

•    Some locations on the intranet might discourage web scraping to prevent data duplication or data theft.

•    Many websites have in place a number of different traps to detect and ban web scraping tools and programs.

•    Certain websites make it clear in their terms and conditions that they consider web scraping an infringement of their privacy and might even consider legal redress.

•    In a number of locations, simple measures are implemented to prevent non-human traffic to websites, making it difficult for web scraping tools to go on collecting data at a fast pace.

To surmount these difficulties, you need a deeper and more insightful understanding of the way web scraping works and also the attitude of website owners towards web scraping efforts. Most major issues can be subverted or quietly avoided if you maintain good working practice during your web scraping efforts and understand the mentality of the people whose sites you are scraping.

Common Problems

With automated scraping, you might face a number of common problems. The behavior of web scraping programs or spiders presents a certain picture to the target website. It then uses this behavior to distinguish between human users and web scraping spiders. Depending on that information, a website may or may not employ particular web scraping traps to stop your efforts. Some of the commonly employed traps are –

Crawling Pattern Checks – Some websites detect scraping activities by analyzing crawling patterns. Web scraping robots follow a distinct crawling pattern which incorporates repetitive tasks like visiting links and copying content. By carefully analyzing these patterns, websites can determine that they are being caused by a web scraping robot and not a human user, and can take preventive measures.

Honeypots – Some websites have honeypots in their webpages to detect and block web scraping activities. These can be in the form of links that are not visible to human users, being disguised in a certain way. Since your web crawler program does not operate the way a human user does, it can try and scrape information from that link. As a result, the website can detect the scraping effort and block the source IP addresses.

Policies – Some websites make it absolutely apparent in their terms and conditions that they are particularly averse to web scraping activities on their content. This can act as a deterrent and make you vulnerable against possible ethical and legal implications.

Infinite Loops – Your web scraping program can be tricked into visiting the same URL again and again by using certain URL building techniques.

These traps in web scraping can prove to be detrimental to your efforts and you need to find innovative and effective ways to surpass these problems. Learning some web crawler tips to avoid traps and judiciously using them is a great way of making sure that your web scraping requirements are met without any hassle.

What you can do

The first and foremost rule of thumb about web scraping is that you have to make your efforts as inconspicuous as possible. This way you will not arouse suspicion and negative behavior from your target websites. To this end, you need a well-designed web scraping program with a human touch. Such a program can operate in flexible ways so as to not alert website owners through the usual traffic criteria used to spot scraping tools.

Some of the measures that you can implement to ensure that you steer clear of common web scraping traps are –

•    The first thing that you need to do is to ascertain if a particular website that you are trying to scrape has any particular dislike towards web scraping tools. If you see any indication in their terms and conditions, tread cautiously and stop scraping their website if you receive any notification regarding their lack of approval. Being polite and honest can help you get away with a lot.

•    Try and minimize the load on every single website that you visit for scraping. Putting a high load on websites can alert them towards your intentions and often might cause them to develop a negative attitude. To decrease the overall load on a particular website, there are many techniques that you can employ.

•    Start by caching the pages that you have already crawled to ensure that you do not have to load them again.

•    Also store the URLs of crawled pages.

•    Take things slow and do not flood the website with multiple parallel requests that put a strain on their resources.

•    Handle your scraping in gentle phases and take only the content you require.

•    Your scraping spider should be able to diversify its actions, change its crawling pattern and present a polymorphic front to websites, so as not to cause an alarm and put them on the defensive.

•    Arrive at an optimum crawling speed, so as to not tax the resources and bandwidth of the target website. Use auto throttling mechanisms to optimize web traffic and put random breaks in between page requests, with the lowest possible number of concurrent requests that you can work with.

•    Use multiple IP addresses for your scraping efforts, or take advantage of proxy servers and VPN services. This will help to minimize the danger of getting trapped and blacklisted by a website.

•    Be prepared to understand the respect the express wishes and policies of a website regarding web scraping by taking a good look at the target ‘robots.txt’ file. This file contains clear instructions on the exact pages that you are allowed to crawl, and the requisite intervals between page requests. It might also specify that you use a pre-determined user agent identification string that classifies you as a scraping bot. adhering to these instructions minimizes the chance of getting on the bad side of website owners and risking bans.

Use an advanced tool for web scraping which can store and check data, URLs and patterns. Whether your web scraping needs are confined to one domain or spread over many, you need to appreciate that many website owners do not take kindly to scraping. The trick here is to ensure that you maintain industry best practices while extracting data from websites. This prevents any incident of misunderstanding, and allows you a clear pathway to most of the data sources that you want to leverage for your requirements.

Hope this article helps in understanding the different traps and roadblocks that you might face during your web scraping endeavors. This will help you in figuring out smart, sensible ways to work around them and make sure that your experience remains smooth. This way, you can keep receiving the important information that you need with web scraping. Following these basic guidelines can help you prevent getting banned or blacklisted and stay in the good books of website owners. This will allow you continue with your web scraping activities unencumbered.

Source: https://www.promptcloud.com/blog/some-traps-to-avoid-in-web-scraping/

Tuesday, 7 April 2015

The Coal Mining Industry And Investing In It

The History Of Coal Usage

Coal was initially used as a domestic fuel, until the industrial revolution, when coal became an integral part of manufacturing for creating electricity, transportation, heating and molding purposes. The large scale mining aspect of coal was introduced around the 18th century, and Britain was the first nation to successfully use advanced coal mining techniques, which involved underground excavation and mining.

Initially coal was scraped off the surface by different processes like drift and shaft mining. This has been done for centuries, and since the demand was quite low, these mining processes were more than enough to accommodate the demand in the market.

However, when the practical uses of using coal as fuel sparked industrial revolution, the demand for coal rose abruptly, leading to severe shortage of the coal output, gradually paving the way for new ways to extract coal from under the ground.

Coal became a popular fuel for all purposes, even to this day, due to their abundance and their ability to produce more energy per mass than other conventional solid fuels like wood. This was important as far as transportation, creating electricity and manufacturing processes are concerned, which allowed industries to use up less space and increase productivity. The usage of coal started to dwindle once alternate energies such as oil and gas began to be used in almost all processes, however, coal is still a primary fuel source for manufacturing processes to this day.

The Process Of Coal Mining

Extracting coal is a difficult and complex process. Coal is a natural resource, a fossil fuel that is a result of millions of years of decay of plants and living organisms under the ground. Some can be found on the surface, while other coal deposits are found deep underground.

Coal mining or extraction comes broadly in two different processes, surface mining, and deep excavation. The method of excavation depends on a number of different factors, such as the depth of the coal deposit below the ground, geological factors such as soil composition, topography, climate, available local resources, etc.

Surface mining is used to scrape off coal that is available on the surface, or just a few feet underground. This can even include mountains of coal deposit, which is extracted by using explosives and blowing up the mountains, later collecting the fragmented coal and process them.

Deep underground mining makes use of underground tunnels, which is built, or dug through, to reach the center of the coal deposit, from where the coal is dug out and brought to the surface by coal workers. This is perhaps the most dangerous excavation procedure, where the lives of all the miners are constantly at a risk.

Investing In Coal

Investing in coal is a safe bet. There are still large reserves of coal deposits around the world, and due to the popularity, coal will be continued to be used as fuel for manufacturing process. Every piece of investment you make in any sort of industry or a manufacturing process ultimately depends on the amount of output the industry can deliver, which is dependent on the usage of any form of fuel, and in most cases, coal.

One might argue that coal usage leads to pollution and lower standards of hygiene for coal workers. This was arguably true in former years; however, newer coal mining companies are taking steps to assure that the environmental aspects of coal mining and usage are kept minimized, all the while providing better working environment and benefits package for their workers. If you can find a mining company that promises all these, and the one that also works within the law, you can be assured safety for your investments in coal.

Source: http://ezinearticles.com/?The-Coal-Mining-Industry-And-Investing-In-It&id=5871879

Monday, 30 March 2015

Grow your business faster with affordable web data extraction services

Data is vital to running a successful business, and every business today tries to incorporate business intelligence value into its operations model by analyzing market trends, studying competitors, and observing user and market demands. A huge amount of historical as well as general Data Extraction is needed in order to accurately study and predict such factors, and gaining access to it is not an easy task. Any business that has a well documented database is highly unlikely to share its resources with anyone else, and most businesses have no choice other than to either purchase this data from a broker, or slowly collect the data on their own.

Now with the entry of web data extraction services in the market, companies have a third option. One that optimally balances monetary as well as timing related needs of the business.For contact information to product details, and even blogs about a particular topic, the needs of a business when it comes to data are varied, and there is no single extraction solution that fits all needs. This is the reason that businesses require the services of a data extraction provider who can customize their tools to pull out specific data on the client's demand. At the same time, in order to quality being dubbed the best web data extraction service provider, the company needs to have an already existing database of popularly needed information, which a business can purchase whenever they need it.

Understanding data extraction

Before you can even begin to decide which data extraction service is right for you, you must first know what data extraction really is. Data exists in many forms online, not all of them readable by machines. Images, for example, can have enormously useful information, but a software cannot tell what they contain. Graphics and videos often contain vital data, which would benefit businesses immensely, and needs to be extracted and saved in a form that can be easily indexed and searched by software solutions. This process of making otherwise unreadable data ready, for software solutions of machines is known as data extraction.

Data extraction is a delicate process that often combines human intelligence with computing power of the machine to achieve desirable results. Information needs to be verified to ensure that extraction was without any error. When trying to find the best web data extraction services for your business, it pays to understand the efforts that the company will have to put in, in order to offer you a high quality standard.

Get reliable and affordable web data extraction services for your needs. Make sure that your business gets to profit from the amazing array of opportunities that the possession of a well built database presents. Hire an affordable data extraction service and gain access to all the information that you require for working in an even better and professional manner. Their services can directly affect the operations of your business, so make sure you pick only the best web data extraction services provider for your needs.

We are leading Webdatascraping.us company and enough capable to extract website information, review scraping, contact information scraping, business directory scraping, email list scraping etc.

Friday, 27 March 2015

Make Your Business More Intelligent with Web Data Extraction services

Data extraction is that the most practiced technique which will assist you realizes the pertaining knowledge for your existing business or any personal use. Many times, we discover that experts’ copy and paste data manually from web content or transfer the complete web site that may be a waste of your time and energy.

Now with the new technique of Data extraction you'll crawl through hundreds and many web content so as to extract specific knowledge and at the very same time save this information or data within the following manner.

    CSV FILE

    XML FILE or Any other custom format for future use.


Below given are some instances of Data extraction process:
  •     Conduct a government portal, extracting names of voters for a survey
  •     Seek for competitor websites for product valuation and information on features
  •     Utilize web scraping to download images from a stock photography site for website design

How can Data Extraction serve you?

 You can extract data from any kind of websites like


Extract Data from any kind of Websites: Directories, Classified Websites, News Websites, Blogs, Articles, Job Portals, Search Engines, Ecommerce Websites, Social Media Websites and any kind of websites whose content can be accessible. Extract Emails, Contacts, Price/Rate, Features, Contact Names, Contact Details, Full Text, Live updates, ASINs, Meta Tags, Address, Phone, Fax, Latitude & Longitude, Images, Links, Reviews, Ratings, etc. Help in Data Collection, Competitor Analysis, Research, Business Intelligence, Social Media Trend analysis, Brand Monitoring, Lead Data Collection, Website & Competitor Web Monitoring, etc. Deliver Data in any Database, Excel, CSV, Access, Text, My SQL, SQL, Oracle, etc. and in any format Custom Services of Web Data Extraction as per client need one time Data Delivery or Continued/Scheduled Data Delivery

The next one is Website Data Scraping:

 Website Data Scraping is that method of extracting such information or data from web site by utilising specific software system program accessible from evidenced web site solely.

This extracted data may be utilised by somebody and for any functions as per their requirements; data extracted may be employed in totally different industries. There are a unit several corporations providing best website data scraping services.

It is one such field that has active developments and conjointly shares a standard objective that wants breakthrough within the following:
  •     Text Processing
  •     Semantic Understanding
  •     Artificial Intelligence
  •     Human Computer Interactions

There are several users or finish users, corporations and specialists that require info or information that's accessible in some or the opposite format. In such cases Web Data Extraction will tailor the necessity of extracting information from any tested supply and preserve the information on a selected destination.

The source platform contains:
  •     Excel
  •     CSV
  •     MySQL and
  •     Others

Websitedatascraping.com is enough capable to web data scraping, website data scraping, web scraping services, website scraping services, data scraping services, product information scraping and yellowpages data scraping.