Wednesday, 31 December 2014

Data Extraction, Web Screen Scraping Tool, Mozenda Scraper

Web Scraping

Web scraping, also known as Web data extraction or Web harvesting, is a software method of extracting data from websites. Web scraping is closely related and similar to Web indexing, which indexes Web content. Web indexing is the method used by most search engines. The difference with Web scraping is that it focuses more on the translation of unstructured content on the Web, characteristically in rich text format like that of HTML, into controlled data that can be analyzed stored and in a spreadsheet or database. Web scraping also makes Web browsing more efficient and productive for users. For example, Web scraping automates weather data monitoring, online price comparison, and website change recognition and data integration. 

This clever method that uses specially coded software programs is also used by public agencies. Government operations and Law enforcement authorities use data scrape methods to develop information files useful against crime and evaluation of criminal behaviors. Medical industry researchers get the benefit and use of Web scraping to gather up data and analyze statistics concerning diseases such as AIDS and the most recent strain of influenza like the recent swine flu H1N1 epidemic.

Data scraping is an automatic task performed by a software program that extracts data output from another program, one that is more individual friendly. Data scraping is a helpful device for programmers who have to generate a line through a legacy system when it is no longer reachable with up to date hardware. The data generated with the use of data scraping takes information from something that was planned for use by an end user.

One of the top providers of Web Scraping software, Mozenda, is a Software as a Service company that provides many kinds of users the ability to affordably and simply extract and administer web data. Using Mozenda, individuals will be able to set up agents that regularly extract data then store this data and finally publish the data to numerous locations. Once data is in the Mozenda system, individuals may format and repurpose data and use it in other applications or just use it as intelligence. All data in the Mozenda system is safe and sound and is hosted in a class A data warehouses and may be accessed by users over the internet safely through the Mozenda Web Console.

One other comparative software is called the Djuggler. The Djuggler is used for creating web scrapers and harvesting competitive intelligence and marketing data sought out on the web. With Dijuggles, scripts from a Web scraper may be stored in a format ready for quick use. The adaptable actions supported by the Djuggler software allows for data extraction from all kinds of webpages including dynamic AJAX, pages tucked behind a login, complicated unstructured HTML pages, and much more. This software can also export the information to a variety of formats including Excel and other database programs.

Web scraping software is a ground-breaking device that makes gathering a large amount of information fairly trouble free. The program has many implications for any person or companies who have the need to search for comparable information from a variety of places on the web and place the data into a usable context. This method of finding widespread data in a short amount of time is relatively easy and very cost effective. Web scraping software is used every day for business applications, in the medical industry, for meteorology purposes, law enforcement, and government agencies.

Source:http://www.articlesbase.com/databases-articles/data-extraction-web-screen-scraping-tool-mozenda-scraper-3568330.html

Tuesday, 30 December 2014

How to scrape address from Google Maps

If you want to build a new online directory based website and want it to be popular with latest web contents, then you need the help of web scraping services from iWeb scraping. If you want to scrape address from maps.google.com, there is a specialized web scraping tool developed by iWeb scraping which can do the job for you. There are plenty of benefits with web scraping which includes market research, gathering customer information, managing product catalogs, compare prices, gather real estate data, gather job posting information etc. Web scraping technology is very popular nowadays and it saves lot of time and effort involved in manual extraction of data from websites.

The web scraping tools developed iWeb Scraping is very user-friendly and can extract specific information from targeted websites. It converts data from HTML web pages to useful formats like Excel spread sheets or Access database. Whatever web scraping requirements you have, you can contact iWeb Scraping as they have more than 3.5 years of web data extraction experience and offer the best prices in the industry. Also their services are available in 24x7 basis and free pilot projects will be done based on request.

Companies which require specific web data and look for an application which can automate the process and export the HTML data in structured format could benefit greatly from web scraping applications of iWeb scraping. You can easily extract data from multiple target websites, parse and re-assemble the information in HTML format to database or spread sheets as you wish. The application has simple point-and-click user-interface and any beginner can use it scrape address from Google Maps. If you want to gather address of people in particular region from Google maps, you can do it with help of web scraping application developed by iWebscraping.

Web Scraping is a technology that able to digest target website databases that are visible only as HTML web pages, and create a local, identical replica of those databases as a information or result. With our web scraping & web data extraction service we can capture web pages, then pin-point specific pieces of data/information you'd like to extract from web pages. What is needed in this process is much more than a Website crawler and set of Website wrappers. The time required to do web data extraction goes down in comparison to manually data copying and pasting job.

Source:http://www.articlesbase.com/information-technology-articles/how-to-scrape-address-from-google-maps-4683906.html

Saturday, 27 December 2014

So What Exactly Is A Private Data Scraping Services To Use You?

If your computer connects to the Internet or resources on the request for this information, and queries to different servers. If you have a website to introduce to the site server recognizes your computer's IP address and displays the data and much more. Many e - commerce sites use to log your IP address, and the browsing patterns for marketing purposes.

Related Articles

Follow Some Tips For Data Scraping Services

Web Data Scraping Assuring Scraping Success Proxy Data Services

Data Scraping Services with Proxy Data Scraping

Web Data Extraction Services for Data Collection - Screen Scrapping Services, Data Mining Services

The  Scraping server you connect to your destination or to process your information and make a filter. For example, IP address or protocol filtering traffic through a  Scraping service. As you might guess, there are many types of  Scraping services. including the ability to a high demand for the software. Email messages are quickly sent to businesses and companies to help you search for contacts.

Although there are Sanding free  Scraping IP addresses in this way can work, the use of payment services, and automatic user interface (plug and play) are easy to give.  Scraping web information services, thus offering a variety of relevant sources of data.  Scraping information service organizations are generally used where large amounts of data every day. It is possible for you to receive efficient, high precision is also affordable.

Information on the various strategies that companies,  Scraping excellent information services, and use the structure planned out and has led to the introduction of more rapid relief of the Earth.

In addition, the application software that has flexibility as a priority. In addition, there is a software that can be tailored to the needs of customers, and satisfy various customer requirements play a major role. Particular software, allows businesses to sell, a customer provides the features necessary to provide the best experience.

If you do not use a private Data Scraping Services suggest that you immediately start your Internet marketing. It is an inexpensive but vital to your marketing company. To choose how to set up a private  Scraping service, visit my blog for more information. Data Scraping Services software as the activity data and provides a large amount of information, Sorting. In this way, the company reduced the cost and time savings and greater return on investment will be a concept.

Without the steady stream of data from these sites to get stopped? Scraping HTML page requests sent by argument on the web server, depending on changes in production, it is very likely to break their staff. 

Data Scraping Services is common in the respective outsourcing company. Many companies outsource  Data Scraping Services service companies are increasingly outsourcing these services, and generally dealing with the Internet business-related activities, in particular a lot of money, can earn.

Web  Data Scraping Services, pull information from a structured plan format. Informal or semi-structured data source from the source.They are there to just work on your own server to extract data to execute. IP blocking is not a problem for them when they switch servers in minutes and back on track, scraping exercise. Try this service and you'll see what I mean.

It is an inexpensive but vital to your marketing company. To choose how to set up a private  Scraping service, visit my blog for more information. Data Scraping Services software as the activity data and provides a large amount of information, Sorting. In this way, the company reduced the cost and time savings and greater return on investment will be a concept.

Source:http://www.articlesbase.com/outsourcing-articles/so-what-exactly-is-a-private-data-scraping-services-to-use-you-5587140.html

Wednesday, 24 December 2014

Limitations and Challenges in Effective Web Data Mining

Web data mining and data collection is critical process for many business and market research firms today. Conventional Web data mining techniques involve search engines like Google, Yahoo, AOL, etc and keyword, directory and topic-based searches. Since the Web's existing structure cannot provide high-quality, definite and intelligent information, systematic web data mining may help you get desired business intelligence and relevant data.

Factors that affect the effectiveness of keyword-based searches include:

• Use of general or broad keywords on search engines result in millions of web pages, many of which are totally irrelevant.

• Similar or multi-variant keyword semantics my return ambiguous results. For an instant word panther could be an animal, sports accessory or movie name.

• It is quite possible that you may miss many highly relevant web pages that do not directly include the searched keyword.

The most important factor that prohibits deep web access is the effectiveness of search engine crawlers. Modern search engine crawlers or bot can not access the entire web due to bandwidth limitations. There are thousands of internet databases that can offer high-quality, editor scanned and well-maintained information, but are not accessed by the crawlers.

Almost all search engines have limited options for keyword query combination. For example Google and Yahoo provide option like phrase match or exact match to limit search results. It demands for more efforts and time to get most relevant information. Since human behavior and choices change over time, a web page needs to be updated more frequently to reflect these trends. Also, there is limited space for multi-dimensional web data mining since existing information search rely heavily on keyword-based indices, not the real data.

Above mentioned limitations and challenges have resulted in a quest for efficiently and effectively discover and use Web resources. Send us any of your queries regarding Web Data mining processes to explore the topic in more detail.

Source: http://ezinearticles.com/?Limitations-and-Challenges-in-Effective-Web-Data-Mining&id=5012994

Monday, 22 December 2014

GScholarXScraper: Hacking the GScholarScraper function with XPath

Kay Cichini recently wrote a word-cloud R function called GScholarScraper on his blog which when given a search string will scrape the associated search results returned by Google Scholar, across pages, and then produce a word-cloud visualisation.

This was of interest to me because around the same time I posted an independent Google Scholar scraper function  get_google_scholar_df() which does a similar job of the scraping part of Kay’s function using XPath (whereas he had used Regular Expressions). My function worked as follows: when given a Google Scholar URL it will extract as much information as it can from each search result on the URL webpage  into different columns of a dataframe structure.

In the comments of his blog post I figured it’d be fun to hack his function to provide an XPath alternative, GScholarXScraper. Essensially it’s still the same function he wrote and therefore full credit should go to Kay on this one as he fully deserves it – I certainly had no previous idea how to make a word cloud, plus I hadn’t used the tm package in ages (to the point where I’d forgotten most of it!). The main changes I made were as follows:

    Restructure internal code of GScholarScraper into a series of local functions which each do a seperate job (this made it easier for me to hack because I understood what was doing what and why).

    As far as possible, strip out Regular Expressions and replace with XPath alternatives (made possible via the XML package). Hence the change of name to GScholarXScraper. Basically, apart from a little messing about with the generation of the URLs I just copied over my get_google_scholar_df() function and removed the Regular Expression alternatives. I’m not saying one is better than the other but f0r me personally, I find XPath shorter and quicker to code but either is a good approach for web scraping like this (note to self: I really need to lean more about regular expressions!) :)

•    Vectorise a few of the loops I saw (it surprises me how second nature this has become to me – I used to find the *apply family of functions rather confusing but thankfully not so much any more!).
•    Make use of getURL from the RCurl package (I was getting some mutibyte string problems originally when using readLines but this approach automatically fixed it for me).
•    Add option to make a word-cloud from either the “title” or the “description” fields of the Google Scholar search results
•    Added steaming via the Rstem package because I couldn’t get the Snowball package to install with my version of java. This was important to me because I was getting word clouds with variations of the same word on it e.g. “game”, “games”, “gaming”.
•    Forced use of URLencode() on generation of URLs to automatically avoid problems with search terms like “Baldur’s Gate” which would otherwise fail.

I think that’s pretty much everything I added. Anyway, here’s how it works (link to full code at end of post):

</pre>
<div id="LC198"># #EXAMPLE 1: Display word cloud based on the title field of each Google Scholar search result returned</div>
<div id="LC199"># GScholarXScraper(search.str = "Baldur's Gate", field = "title", write.table = FALSE, stem = TRUE)</div>
<div id="LC200">#</div>
<div id="LC201"># # word freq</div>
<div id="LC202"># # game game 71</div>
<div id="LC203"># # comput comput 22</div>
<div id="LC204"># # video video 13</div>
<div id="LC205"># # learn learn 11</div>
<div id="LC206"># # [TRUNC...]</div>
<div id="LC207"># #</div>
<div id="LC208"># #</div>
<div id="LC209"># # Number of titles submitted = 210</div>
<div id="LC210"># #</div>
<div id="LC211"># # Number of results as retrieved from first webpage = 267</div>
<div id="LC212"># #</div>
<div id="LC213"># # Be aware that sometimes titles in Google Scholar outputs are truncated - that is why, i.e., some mandatory intitle-search strings may not be contained in all titles</div>

<pre>

// image

I think that’s kind of cool and corresponds to what I would expect for a search about the legendary Baldur’s Gate computer role playing game :)  The following is produced if we look at the ‘description’ filed instead of the ‘title’ field:

</pre>

<div id="LC215"># # EXAMPLE 2: Display word cloud based on the description field of each Google Scholar search result returned</div>
<div id="LC216">GScholarXScraper(search.str = "Baldur's Gate", field = "description", write.table = FALSE, stem = TRUE)</div>
<div id="LC217">#</div>
<div id="LC218"># # word freq</div>
<div id="LC219"># # page page 147</div>
<div id="LC220"># # gate gate 132</div>
<div id="LC221"># # game game 130</div>
<div id="LC222"># # baldur baldur 129</div>
<div id="LC223"># # roleplay roleplay 21</div>
<div id="LC224"># # [TRUNC...]</div>
<div id="LC225"># #</div>
<div id="LC226"># # Number of titles submitted = 210</div>
<div id="LC227"># #</div>
<div id="LC228"># # Number of results as retrieved from first webpage = 267</div>
<div id="LC229"># #</div>
<div id="LC230"># # Be aware that sometimes titles in Google Scholar outputs are truncated - that is why, i.e., some mandatory intitle-search strings may not be contained in all titles</div>
<pre>

//image

Not bad. I could see myself using the text mining and word cloud functionality with other projects I’ve been playing with such as Facebook, Google+, Yahoo search pages, Google search pages, Bing search pages… could be fun!

Many thanks again to Kay for making his code publicly available so that I could play with it and improve my programming skill set.

Code:

Full code for GScholarXScraper can be found here: https://github.com/tonybreyal/Blog-Reference-Functions/blob/master/R/GScholarXScraper/GScholarXScraper

Original GSchloarScraper code is here: https://docs.google.com/document/d/1w_7niLqTUT0hmLxMfPEB7pGiA6MXoZBy6qPsKsEe_O0/edit?hl=en_US

Full code for just the XPath scraping function is here: https://github.com/tonybreyal/Blog-Reference-Functions/blob/master/R/googleScholarXScraper/googleScholarXScraper.R

Source:http://www.r-bloggers.com/gscholarxscraper-hacking-the-gscholarscraper-function-with-xpath/

Thursday, 18 December 2014

Extractions and Skin Care

As an esthetician or skin care professional, you may have heard some controversy over the matter of performing extractions during a routine facial service. What may seem like a relatively simple procedure can actually raise great controversy in the world of esthetics. Some estheticians regard extractions as a matter of providing a complete service while others see this as inflicting trauma to the skin. Learning more about both sides of the issue can help you as a professional in making an informed decision and explaining the issue to your clients.

What is an extraction?

As a basic review, an extraction is removing impurity (plug of dead skin or oil) from a pore or pimple. It is the removal of both blackheads and whiteheads from the skin. Extractions occur after the skin has been thoroughly cleansed, exfoliated and sometimes steamed to soften the area prior to extraction.

Why Do It?

Extractions are considered a "must" by many estheticians when performing a routine facial because they want to leave their clients skin looking and feeling it's best. When done correctly, a simple extraction should be quick and relatively painless. As a trained esthetician it is important to know if your client has sensitive skin which would make them more prone to the damage that can be caused by extractions.

Why Not?

Extractions should only be performed by a trained esthetician and should not be done in excess. Extractions can cause broken capillaries or sin irritations that can lead to more (not less) breakouts. Extractions can also cause discomfort for your client when done incorrectly so you should seek their permission before performing any type of extraction during their facial. Remember your client has the right to know any product or procedure being performed on their skin and make an informed choice.

Who Decides?

As an esthetician it may be entirely up to you or it may be a procedure within your salon to do or not do extractions. It is important to check the guidelines of your employer and know their policies before performing any procedure. Remember to explain extractions and their benefits and possible complications to your client. Trust is an important part of any relationship and your client needs to know you are being open and honest with them. The last thing you want as a professional is a reputation for inflicting unnecessary and unwanted procedures or damage to your client's skin.

Bellanina Institute's owner and director, Nina Howard, is a multi-talented, forward-thinking entrepreneur who has built the Bellanina brand form the ground up to a successful million-dollar spa, spa training business, and skin care product line. Nina is a Licensed Esthetician with Para-Medical studies, Massage Therapist, Polarity Therapist, Skin Care Educator, Artist, and Professional Interior Designer.

Source:http://ezinearticles.com/?Extractions-and-Skin-Care&id=5271715

Tuesday, 16 December 2014

Benefits of Predictive Analytics and Data Mining Services

Predictive Analytics is the process of dealing with variety of data and apply various mathematical formulas to discover the best decision for a given situation. Predictive analytics gives your company a competitive edge and can be used to improve ROI substantially. It is the decision science that removes guesswork out of the decision-making process and applies proven scientific guidelines to find right solution in the shortest time possible.

Predictive analytics can be helpful in answering questions like:

•    Who are most likely to respond to your offer?
•    Who are most likely to ignore?
•    Who are most likely to discontinue your service?
•    How much a consumer will spend on your product?
•    Which transaction is a fraud?
•    Which insurance claim is a fraudulent?
•    What resource should I dedicate at a given time?

Benefits of Data mining include:

•    Better understanding of customer behavior propels better decision
•    Profitable customers can be spotted fast and served accordingly
•    Generate more business by reaching hidden markets
•    Target your Marketing message more effectively
•    Helps in minimizing risk and improves ROI.
•    Improve profitability by detecting abnormal patterns in sales, claims, transactions etc
•    Improved customer service and confidence
•    Significant reduction in Direct Marketing expenses

Basic steps of Predictive Analytics are as follows:


•    Spot the business problem or goal
•    Explore various data sources such as transaction history, user demography, catalog details, etc)
•    Extract different data patterns from the above data
•    Build a sample model based on data & problem
•    Classify data, find valuable factors, generate new variables
•    Construct a Predictive model using sample
•    Validate and Deploy this Model

Standard techniques used for it are:


•    Decision Tree
•    Multi-purpose Scaling
•    Linear Regressions
•    Logistic Regressions
•    Factor Analytics
•    Genetic Algorithms
•    Cluster Analytics
•    Product Association

Should you have any queries regarding Data Mining or Predictive Analytics applications, please feel free to contact us. We would be pleased to answer each of your queries in detail.

Source:http://ezinearticles.com/?Benefits-of-Predictive-Analytics-and-Data-Mining-Services&id=4766989

Monday, 15 December 2014

RAM Scraping a New Old Favorite For Hackers

Some of the best stories involve a conflict with an old enemy: a friend-turned-foe, long thought dead, returning from the grave for violent retribution; an ancient order of dark siders from the distant reaches of the galaxy, hiding in plain sight and waiting to seize power for themselves; a dark lord thought destroyed millennia ago, only to rise again and seek his favorite piece of jewelry.  The list goes on.

Granted, 2011 isn’t quite “millennia,” and this story isn’t meant for entertainment, but the old foe in this instance is nonetheless dangerous in its own right.  That is the year when RAM scraping malware first made major headlines: originating as an advanced version of the Trackr malware, controlled through a botnet, it was discovered in the compromised Point of Sale (POS) systems of a university and several hotels.  And while it seemed recently that this method had dwindled in popularity, the Target and other retail breaches saw it return with a vengeance.  With 110 million Target customers having their information compromised, it was easily one the largest incidents involving memory scrapers.

How does it work?  First, the malware has to be introduced into the POS network, which can happen via any machine that is connected to the network, or unsecured wireless networks.  Even with firewalls, an infected laptop could serve as a vector.  Once installed, the malware can hide in the shadows, employing encryption or antivirus-avoiding tools to prevent its identification until it’s ready to strike.  Then, when a customer’s card gets used at a POS machine, the data contained within—name, card number, security code, etc.—gets sent to the system memory.  “There is that opportunity to steal the credit card information when it is in memory, perhaps even before your payment has even been authorized, and the data hasn't even been written to the hard drive yet,” says security researcher Graham Cluley.

So, why not encrypt the system’s memory, when it’s at its most vulnerable?  Not that simple, sadly: “No matter how strong your encryption is, if the system needs to process data or process the code, everything needs to be decrypted in memory,” Chris Elisan, principal malware scientist at security firm RSA, explained to Dark Reading.

There are certain steps a company can take, of course, and should take, to reduce the risk.  Strong passwords to access the POS machines, firewalls to isolate the POS network from the Internet, disabling remote access to POS systems, to name a few.  All the same, while these measures are vital and should be used, I don’t think, in light of recent breaches, they are sufficient.  Now, I wrote a short time ago about the impending October 2014 deadline imposed by the credit card industry, regarding the systematic switch to chipped credit card technology; adopting this standard will definitely assist in eradicating this problem.  But, until such a time when a widespread implementation of new systems comes about, always be vigilant to protect your data from attack, because what’s old is new again, and a colossal data breach is a story consumers are liable to seek financial restitution for.

Source:http://www.netlib.com/blog/application-security/RAM-Scraping-a-New-Old-Favorite-For-Hackers.asp

Saturday, 13 December 2014

Local ScraperWiki Library

It quite annoyed me that you can only use the scraperwiki library on a ScraperWiki instance; most of it could work fine elsewhere. So I’ve pulled it out (well, for Python at least) so you can use it offline.

How to use
pip install scraperwiki_local
A dump truck dumping its payload

You can then import scraperwiki in scripts run on your local computer. The scraperwiki.sqlite component is powered by DumpTruck, which you can optionally install independently of scraperwiki_local.

pip install dumptruck
Differences

DumpTruck works a bit differently from (and better than) the hosted ScraperWiki library, but the change shouldn’t break much existing code. To give you an idea of the ways they differ, here are two examples:

Complex cell values
What happens if you do this?
import scraperwiki
shopping_list = ['carrots', 'orange juice', 'chainsaw']
scraperwiki.sqlite.save([], {'shopping_list': shopping_list})
On a ScraperWiki server, shopping_list is converted to its unicode representation, which looks like this:
[u'carrots', u'orange juice', u'chainsaw']
In the local version, it is encoded to JSON, so it looks like this:
["carrots","orange juice","chainsaw"]


And if it can’t be encoded to JSON, you get an error. And when you retrieve it, it comes back as a list rather than as a string.

Case-insensitive column names
SQL is less sensitive to case than Python. The following code works fine in both versions of the library.

In [1]: shopping_list = ['carrots', 'orange juice', 'chainsaw']
In [2]: scraperwiki.sqlite.save([], {'shopping_list': shopping_list})
In [3]: scraperwiki.sqlite.save([], {'sHOpPiNg_liST': shopping_list})
In [4]: scraperwiki.sqlite.select('* from swdata')

Out[4]: [{u'shopping_list': [u'carrots', u'orange juice', u'chainsaw']}, {u'shopping_list': [u'carrots', u'orange juice', u'chainsaw']}]

Note that the key in the returned data is ‘shopping_list’ and not ‘sHOpPiNg_liST’; the database uses the first one that was sent. Now let’s retrieve the individual cell values.

In [5]: data = scraperwiki.sqlite.select('* from swdata')
In [6]: print([row['shopping_list'] for row in data])
Out[6]: [[u'carrots', u'orange juice', u'chainsaw'], [u'carrots', u'orange juice', u'chainsaw']]

The code above works in both versions of the library, but the code below only works in the local version; it raises a KeyError on the hosted version.

In [7]: print(data[0]['Shopping_List'])
Out[7]: [u'carrots', u'orange juice', u'chainsaw']

Here’s why. In the hosted version, scraperwiki.sqlite.select returns a list of ordinary dictionaries. In the local version, scraperwiki.sqlite.select returns a list of special dictionaries that have case-insensitive keys.

Develop locally

Here’s a start at developing ScraperWiki scripts locally, with whatever coding environment you are used to. For a lot of things, the local library will do the same thing as the hosted. For another lot of things, there will be differences and the differences won’t matter.

If you want to develop locally (just Python for now), you can use the local library and then move your script to a ScraperWiki script when you’ve finished developing it (perhaps using Thom Neale’s ScraperWiki scraper). Or you could just run it somewhere else, like your own computer or web server. Enjoy!

Source:https://blog.scraperwiki.com/2012/06/local-scraperwiki-library/

Thursday, 11 December 2014

Content Scraping Reuses Blog Posts without Permission

What do popular blogs and websites such as Social Media Examiner, Copy Blogger, CNN.com, Mashable, and Type A Parent have in common? No, it’s not traffic and a loyal online community, each was a victim of the content scraping site “BuzzMyFx.” Although most bloggers fall victim to content scrapers at least once, the offending website was such an extreme case the backlash against it was fast and furious. Thanks to the quick action of many angry bloggers, BuzzMyFix was taken down in a matter of days.

If you’re not familiar with content scraping sites and aren’t sure why they’re bad and what you can do if you fall prey, read on. Not knowing what steps you can take to remove your content from a scraping site can mean someone else is profiting from your hard work.

What is content scraping?

Content scraping is when a blog or website pulls in other bloggers’ content without permission, in many cases passing it off as their own. Instead of stocking their sites with unique content, they steal entire blog posts. Some do leave the original authors’ bylines, but there are plenty that don’t provide attribution at all. This is not a good thing at all.

If you don’t care about someone taking your content and putting it on their blogs and websites without your permission, you should. These sites are stealing traffic, search engine rankings, and even advertising revenue from bloggers. Moreover, by ignoring scraping sites you’re giving the message that this practice is OK.

It’s not OK.

How was BuzzMyFx different?

BuzzMyFx was a little different from your usual scrapers. Bloggers didn’t just find their content had been posted on this site, they learned their entire blogs — down to the design and comments — had been cloned. Plus, any bloggers checking to see if their blogs were being cloned immediately found themselves being scraped as well. Dozens, if not hundreds of blogs were affected. However, bloggers didn’t take this incident sitting down. They spread the word and contacted the site’s host en masse. Thanks to their swift action, and the high number of complaints, the site was removed quickly.

How can I tell if my content is being scraped?

Fortunately for content creators, scrapers are a lazy bunch. Because their sites are automated, and they don’t check or read the content being pulled, they don’t take many precautions to ensure the people they scrape from don’t find their sites. In fact, they may not even care. Fortunately, this makes it easy to learn if your content is being stolen.

    Link to your own articles — When you write a blog post and link to other (of your own) blog posts within that post, it’s not only good SEO. You also will get pingbacks whenever someone else steals your content because of your interlinks. You’re alerted when someone links to your content, and when content is published with your links, you’ll get that alert.

    Google Alerts — If your name, blog’s name, or other unique keywords are set up as Google Alerts, you’ll receive an e-mail every time content is published with these keywords.

    Analytics — When people click on your links that are in scraped content, it will show up as referring traffic in your analytics program. You should always check referring traffic so you can thank the referring site owner, but also to make sure no one is stealing your content.

What steps can I take to remove my content from a scraper?

If you find your content is being stolen, know you have several options. First, you’ll need to find out who owns the scraping site. You can find this out by doing a WHOis domain lookup, which will enable you to search for the website’s details, including the name of the webmaster, contact info, and the name of the site’s host.

Keep in mind that sometimes the website’s owner will pay extra to have his or her name kept private, but you will always be able to find the name of the host. Once you have this information, you can take the necessary steps to have your content removed.

    Contact the site’s owner personally: Your first step should always be a polite request to remove your content immediately. Let the website owner know he or she is in violation of the Digital Millennium Copyright Act (DMCA), and you will take the necessary steps to report him if he doesn’t comply.

    Contact the site’s host: If you can’t find the name of the person who owns the site, or if he won’t comply with your takedown request, contact the website’s host. You’ll have to prove your content is being stolen. As the host can be held liable for allowing the content theft, it’s in their best interest to contact the website owner and request removal.

    Contact Google: You can contact Google and fill out a form to have them remove the website from their search engines.

    Spread the word: Let all your blogging friends know about content scrapers when you come across them. The more people who take action against content scrapers, the less likely they are to do it again.

Contacting the webmaster with a takedown notice doesn’t have to be an intimidating process, either. The website Plagiarism Today has a wonderful set of stock letters to use to contact webmasters, web hosts, and even Google. All you have to do is insert the necessary information.

Content scrapers and cloners may try to steal your content, but you don’t have to let them. Stand up for what’s yours.

Source: http://www.dummies.com/how-to/content/content-scraping-reuses-blog-posts-without-permiss.html

Thursday, 4 December 2014

Finding & Removing Spam Blogs Who Scrape Content Onto Free Hosted Blogs

The more popular you become in the blogging world, the more crap you have to deal with!
Content scraping is one chore that can be dealt with swiftly once you understand what to do.
This post contains links which you can use to quickly and easily report content scrapers and spam blogs.
Please share this post and help clean up spam blogs and punish content scrapers.
First step is to find your url’s which have been scraped of content and then get the scrapers spam blog removed.

Some of the tools i use to do this are:

    Google Webmaster Tools
    Google Alerts


Finding Scraped Content
Login to your Google Webmaster Tools account and go to traffic > links to your site.
You should see something like this:
Webmaster Tools Links to Your Site

The first domain is a site which has copied and embedded my homepage which i have already dealt with.
The second site is a search engine.
The third domain is the one i want to deal with.

A common method scrapers use is to post the scraped content from your rss feed on to a free hosted blog like WordPress.com or blogger.com.

Once you click the WordPress.com link in webmaster tools, you’ll find all the url’s which have been scraped.
Links to Your Site

There’s 32 url’s which have been linked to so its simply a matter of clicking each of your links and finding the culprits.

The first link is my homepage which has been linked to by legit domains like WordPress developers.
The others are mainly linked to by spam blogs who have scraped the content and used a free hosted service which in this case is WordPress.com.
WordPress.com Links to Your Site
 Reporting & Removing Spam Blogs

Once you have the url’s of the content scraping blogs as seen in the screenshot above:

    Fill in this basic form to report spam to WordPress.com
    Fill in this form to report copyright content to WordPress.com
    Use this form to report Blogspot and Blogger.com content which has been scraped.
    Fill in one of these forms to remove content from Google

Google Alerts

Its very easy to setup a Google alert to find your post titles when they get scraped.
If you’ve setup the WordPress SEO plugin correctly, you should have included your site title at the end of all your post titles.
Then all you need to do is setup a Google alert for your site title and you’ll be notified every time a scraper links to your content.

Link Notifications

You may also receive a pingback or trackback if you have this feature enabled in your discussion settings.

Link Notifications
RSS Feed Links


Most content scrapers use automated software to scrape the content from RSS feeds.
Make sure you configure your Reading settings so only a summary is displayed.
Reading Settings Feed Summary

Next step is to configure the settings in Yoast’s SEO plugin so links back to your site are included in all RSS feed post summaries.

RSS Feed Links

This will help search engines identify you and your domain as the original author of the content.
There’s other services like copyscape and dmca which can help you protect your sites content if you’re prepared to pay a premium.
That’s it folks.
Its easy to find and get spam sites removed once you know what to do.
Hope you don’t have to deal with this garbage to often.
Ever found out your content has been scraped?
What did you do about it?

Source: http://wpsites.net/blogging/content-scraping-monitoring-and-prevention-tips/